scholarly journals A Potential Role for Phenotypic Plasticity in Invasions and Declines of Social Insects

Author(s):  
Fabio Manfredini ◽  
Marina Arbetman ◽  
Amy L. Toth
2016 ◽  
Vol 13 ◽  
pp. 55-60 ◽  
Author(s):  
Miguel Corona ◽  
Romain Libbrecht ◽  
Diana E Wheeler

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marina Choppin ◽  
Barbara Feldmeyer ◽  
Susanne Foitzik

Abstract Background In insect societies, queens monopolize reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers of many ant species. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. Thus, we investigated the role of histone acetylation in regulating worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (TSA), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. Results Workers survived better in queenless colonies. They also developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with the chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 altered the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. Conclusion Our results suggest that histone acetylation is involved in the molecular regulation of worker reproduction, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects.


2017 ◽  
Author(s):  
Shimoji Hiroyuki ◽  
Mizumoto Nobuaki ◽  
Oguchi Kohei ◽  
Dobata Shigeto

AbstractThe caste system of termites is an example of phenotypic plasticity. The castes differ not only in morphology and physiology, but also in behavior. As most of their behaviors within colonies involve nestmates, it is difficult to extract innate differences among castes. In this study, we focused on movement patterns of isolated individuals ofHodotermopsis sjostedti. We observed distinct clusters in movement patterns over 30 min, which indicates that termites have multiple innate modes of movement. The use of these modes is biased among castes, among which neotenics had a caste-specific mode and soldiers moved more actively than workers or neotenics. These caste biases may reflect different adaptive responses to social isolation. Our study provides a basis for a deeper understanding of the roles of individual movements in social behaviors.Summary StatementMovement patterns of termites in isolation were described for different castes. We proposed movements as a novel caste-specific characteristics in social insects.


2020 ◽  
Vol 60 (3) ◽  
pp. 608-618
Author(s):  
Nidal Karagic ◽  
Axel Meyer ◽  
C Darrin Hulsey

Synopsis Vertebrates interact directly with food items through their dentition, and these interactions with trophic resources could often feedback to influence tooth structure. Although dentitions are often considered to be a fixed phenotype, there is the potential for environmentally induced phenotypic plasticity in teeth to extensively influence their diversity. Here, we review the literature concerning phenotypic plasticity of vertebrate teeth. Even though only a few taxonomically disparate studies have focused on phenotypic plasticity in teeth, there are a number of ways teeth can change their size, shape, or patterns of replacement as a response to the environment. Elucidating the underlying physiological, developmental, and genetic mechanisms that generate phenotypic plasticity can clarify its potential role in the evolution of dental phenotypes.


Author(s):  
Marina Choppin ◽  
Barbara Feldmeyer ◽  
Susanne Foitzik

In insect societies, the queen monopolizes reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers from many ants. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. We investigated the role of histone acetylation in the regulation of worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (Trichostatin A), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. Workers survived better in queenless colonies and developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 influenced the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. Our results indicate that histone acetylation is involved in the molecular regulation of worker reproduction and lifespan, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects.


2015 ◽  
Vol 6 ◽  
Author(s):  
João H. Costa-Silva ◽  
José L. de Brito-Alves ◽  
Monique Assis de V. Barros ◽  
Viviane Oliveira Nogueira ◽  
Kássya M. Paulino-Silva ◽  
...  

Author(s):  
Marina Choppin ◽  
Barbara Feldmeyer ◽  
Susanne Foitzik

In insect societies, the queen monopolizes reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers from many ants. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. We investigated the role of histone acetylation in the regulation of worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (Trichostatin A), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. Workers survived better in queenless colonies and developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 influenced the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. Our results indicate that histone acetylation is involved in the molecular regulation of worker reproduction and lifespan, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lewis Revely ◽  
Seirian Sumner ◽  
Paul Eggleton

Phenotypic plasticity provides organisms with the potential to adapt to their environment and can drive evolutionary innovations. Developmental plasticity is environmentally induced variation in phenotypes during development that arise from a shared genomic background. Social insects are useful models for studying the mechanisms of developmental plasticity, due to the phenotypic diversity they display in the form of castes. However, the literature has been biased toward the study of developmental plasticity in the holometabolous social insects (i.e., bees, wasps, and ants); the hemimetabolous social insects (i.e., the termites) have received less attention. Here, we review the phenotypic complexity and diversity of termites as models for studying developmental plasticity. We argue that the current terminology used to define plastic phenotypes in social insects does not capture the diversity and complexity of these hemimetabolous social insects. We suggest that terminology used to describe levels of cellular potency could be helpful in describing the many levels of phenotypic plasticity in termites. Accordingly, we propose a conceptual framework for categorizing the changes in potential of individuals to express alternative phenotypes through the developmental life stages of termites. We compile from the literature an exemplar dataset on the phenotypic potencies expressed within and between species across the phylogeny of the termites and use this to illustrate how the potencies of different life stages of different species can be described using this framework. We highlight how this conceptual framework can help exploit the rich phenotypic diversity of termites to address fundamental questions about the evolution and mechanisms of developmental plasticity. This conceptual contribution is likely to have wider relevance to the study of other hemimetabolous insects, such as aphids and gall-forming thrips, and may even prove useful for some holometabolous social insects which have high caste polyphenism.


Sign in / Sign up

Export Citation Format

Share Document