scholarly journals Comparative Characterization of Mitogenomes From Five Orders of Cestodes (Eucestoda: Tapeworms)

2021 ◽  
Vol 12 ◽  
Author(s):  
Bruna Trevisan ◽  
Denis Jacob Machado ◽  
Daniel J. G. Lahr ◽  
Fernando P. L. Marques

The recognized potential of using mitogenomics in phylogenetics and the more accessible use of high-throughput sequencing (HTS) offer an opportunity to investigate groups of neglected organisms. Here, we leveraged HTS to execute the most comprehensive documentation of mitogenomes for cestodes based on the number of terminals sequenced. We adopted modern approaches to obtain the complete mitogenome sequences of 86 specimens representing five orders of cestodes (three reported for the first time: Phyllobothriidea, “Tetraphyllidea” and Trypanorhyncha). These complete mitogenomes represent an increase of 41% of the mitogenomes available for cestodes (61–147) and an addition of 33% in the representativeness of the cestode orders. The complete mitochondrial genomes are conserved, circular, encoded in the same strand, and transcribed in the same direction, following the pattern observed previously for tapeworms. Their length varies from 13,369 to 13,795 bp, containing 36 genes in total. Except for the Trypanorhyncha specimen, the gene order of the other four cestode orders sequenced here suggests that it could be a synapomorphy for the acetabulate group (with a reversion for taenids). Our results also suggest that no single gene can tell all the evolutionary history contained in the mitogenome. Therefore, cestodes phylogenies based on a single mitochondrial marker may fail to capture their evolutionary history. We predict that such phylogenies would be improved if conducted under a total evidence framework. The characterization of the new mitochondrial genomes is the first step to provide a valuable resource for future studies on the evolutionary relationships of these groups of parasites.

2010 ◽  
Vol 28 (1) ◽  
pp. 615-623 ◽  
Author(s):  
A. Bjork ◽  
W. Liu ◽  
J. O. Wertheim ◽  
B. H. Hahn ◽  
M. Worobey

Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 143 ◽  
Author(s):  
Albert Chen ◽  
Noor D. White ◽  
Roger B.J. Benson ◽  
Michael J. Braun ◽  
Daniel J. Field

Strisores is a clade of neoavian birds that include diurnal aerial specialists such as swifts and hummingbirds, as well as several predominantly nocturnal lineages such as nightjars and potoos. Despite the use of genome-scale molecular datasets, the phylogenetic interrelationships among major strisorean groups remain controversial. Given the availability of next-generation sequence data for Strisores and the clade’s rich fossil record, we reassessed the phylogeny of Strisores by incorporating a large-scale sequence dataset with anatomical data from living and fossil strisoreans within a Bayesian total-evidence framework. Combined analyses of molecular and morphological data resulted in a phylogenetic topology for Strisores that is congruent with the findings of two recent molecular phylogenomic studies, supporting nightjars (Caprimulgidae) as the extant sister group of the remainder of Strisores. This total-evidence framework allowed us to identify morphological synapomorphies for strisorean clades previously recovered using molecular-only datasets. However, a combined analysis of molecular and morphological data highlighted strong signal conflict between sequence and anatomical data in Strisores. Furthermore, simultaneous analysis of molecular and morphological data recovered differing placements for some fossil taxa compared with analyses of morphological data under a molecular scaffold, highlighting the importance of analytical decisions when conducting morphological phylogenetic analyses of taxa with molecular phylogenetic data. We suggest that multiple strisorean lineages have experienced convergent evolution across the skeleton, obfuscating the phylogenetic position of certain fossils, and that many distinctive specializations of strisorean subclades were acquired early in their evolutionary history. Despite this apparent complexity in the evolutionary history of Strisores, our results provide fossil support for aerial foraging as the ancestral ecological strategy of Strisores, as implied by recent phylogenetic topologies derived from molecular data.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 533
Author(s):  
Lei Cui ◽  
Rongbo Cao ◽  
Yuelei Dong ◽  
Xingchen Gao ◽  
Jingyi Cen ◽  
...  

Complete mitochondrial genomes (mitogenomes) are important molecular markers for understanding the phylogenetics of various species. Although recent studies on the mitogenomes of the Scorpaeniformes species have been greatly advanced, information regarding molecular studies and the taxonomic localization of Platycephalidae is still sparse. To further analyze the phylogeny of Platycephalidae, we sequenced the complete mitogenome of Cociella crocodilus of the Platycephalidae family within Scorpaeniformes for the first time. The mitogenome was 17,314 bp in length, contained two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), 13 protein-coding genes (PCGs), and two typical noncoding control regions (the control region (CR) and origin of the light strand (OL)). All PCGs used standard initiation codons ATG, apart from cox1. The majority of the tRNA genes could be folded into cloverleaf secondary structures, whereas the secondary structure of tRNASer (AGN) lacked a dihydrouridine (DHU) stem. The CR contained several conserved sequence blocks (CSBs) and eight tandem repeats. In addition, the phylogenetic relationship based on the concatenated nucleotides sequences of 13 PCGs indicated that the Platycephalidae species are relatively basal in the phylogenetic relationships of Scorpaeniformes. Our results may not only advance the origin and the evolution of Scorpaeniformes, but also provide information for the genetic evolution and taxonomy of the teleostean species.


Sign in / Sign up

Export Citation Format

Share Document