scholarly journals Nanoemulsion Adjuvant Augments Retinaldehyde Dehydrogenase Activity in Dendritic Cells via MyD88 Pathway

2019 ◽  
Vol 10 ◽  
Author(s):  
Mohammad Farazuddin ◽  
Rishi R. Goel ◽  
Nicholas J. Kline ◽  
Jeffrey J. Landers ◽  
Jessica J. O'Konek ◽  
...  
2019 ◽  
Vol 143 (2) ◽  
pp. AB191
Author(s):  
Mohammad Farazuddin ◽  
Rishi R. Goel ◽  
Jeffery J. Landers ◽  
Nicholas J. Kline ◽  
Jessica J.O. Konek ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 743
Author(s):  
Ricardo Wesley Alberca ◽  
Eliane Gomes ◽  
Momtchilo Russo

Allergen-specific T helper (Th)2 cells orchestrate upon allergen challenge the development of allergic eosinophilic lung inflammation. Sensitization with alum adjuvant, a type 2 adjuvant, has been used extensively in animal models of allergic lung disease. In contrast, type 1 adjuvants like CpG-ODN, a synthetic toll-like receptor 9 agonist, inhibit the development of Th2 immunity. CpG-ODN induce type 1 and suppressive cytokines that influence Th2 cell differentiation. Here, we investigated the immune modulatory effect of CpG-ODN on allergic sensitization to OVA with alum focusing on dendritic cells (DCs) expressing the MyD88 molecule and the suppressive IL-10 cytokine. Using mice with specific cell deletion of MyD88 molecule, we showed that CpG-ODN suppressed allergic sensitization and consequent lung allergic inflammation signaling through the MyD88 pathway on dendritic cells, but not on B-cells. This inhibition was associated with an increased production of IL-10 in the bronchoalveolar lavage fluid. Sensitization to OVA with CpG-ODN of IL-10-deficient, but not wild-type mice, induced a shift towards Th1 pattern of inflammation. Employing bone marrow-derived dendritic cells (BM-DCs) pulsed with OVA for sensitizations with or without CpG-ODN, we showed that IL-10 is dispensable for the inhibition of allergic lung Th2 responses by CpG-ODN. Moreover, the lack of IL-10 on DCs was not sufficient for the CpG-ODN-induced immune-deviation towards a Th1 pattern. Accordingly, we confirmed directly the role of MyD88 pathway on DCs in the inhibition of allergic sensitization.


Oncotarget ◽  
2017 ◽  
Vol 8 (62) ◽  
pp. 106050-106070 ◽  
Author(s):  
Junu Aleyas George ◽  
Seong Bum Kim ◽  
Jin Young Choi ◽  
Ajit Mahadev Patil ◽  
Ferdaus Mohd Altaf Hossain ◽  
...  

Author(s):  
Ricardo Wesley Alberca-Custódio ◽  
Luciana Mirotti ◽  
Eliane Gomes ◽  
Fernanda Peixoto Barbosa Nunes ◽  
Raquel Souza Vieira ◽  
...  

Elevated levels of immunoglobulin E (IgE) are associated with allergies and other immunological disorders. Experimentally, sensitization with alum adjuvant favors IgE production while CpG-ODN adjuvant, a synthetic toll-like receptor 9 (TLR9) agonist, inhibits it. The cellular mechanisms underlying TLR-regulation of immunoglobulin production are still controversial. Specifically, TLR-mediated IgE regulation in vivo is not yet known. We show that augmented levels of IgE induced by sensitizations to OVA with or without alum adjuvant or with OVA-pulsed dendritic cells (DCs) were inhibited when sensitization to OVA was performed in the presence of CpG. Notably, CpG-mediated suppression of IgE production required MyD88-expression on DCs but not on B-cells. This contrasts with previous reports of in vitro regulation IgE where CpG acted directly on B cells via MyD88 pathway. In addition, CpG also inhibited IgE production in a MyD88-dependent manner when sensitization was performed with OVA-pulsed DCs. Finally, CpG signaling through MyD88 pathway was also necessary and sufficient to prevent anaphylactic antibody production involved in active cutaneous anaphylaxis.


2018 ◽  
Vol 96 (2) ◽  
pp. 148-160 ◽  
Author(s):  
Yehuda Shabtai ◽  
Abraham Fainsod

Several models have been proposed to explain the neurodevelopmental syndrome induced by exposure of human embryos to alcohol, which is known as fetal alcohol spectrum disorder (FASD). One of the proposed models suggests a competition for the enzymes required for the biosynthesis of retinoic acid. The outcome of such competition is development under conditions of reduced retinoic acid signaling. Retinoic acid is one of the biologically active metabolites of vitamin A (retinol), and regulates numerous embryonic and differentiation processes. The developmental malformations characteristic of FASD resemble those observed in vitamin A deficiency syndrome as well as from inhibition of retinoic acid biosynthesis or signaling in experimental models. There is extensive biochemical and enzymatic overlap between ethanol clearance and retinoic acid biosynthesis. Several lines of evidence suggest that in the embryo, the competition takes place between acetaldehyde and retinaldehyde for the aldehyde dehydrogenase activity available. In adults, this competition also extends to the alcohol dehydrogenase activity. Ethanol-induced developmental defects can be ameliorated by increasing the levels of retinol, retinaldehyde, or retinaldehyde dehydrogenase. Acetaldehyde inhibits the production of retinoic acid by retinaldehyde dehydrogenase, further supporting the competition model. All of the evidence supports the reduction of retinoic acid signaling as the etiological trigger in the induction of FASD.


Immunobiology ◽  
2015 ◽  
Vol 220 (6) ◽  
pp. 769-774 ◽  
Author(s):  
Rodrigo A. Morales ◽  
Mauricio Campos-Mora ◽  
Tania Gajardo ◽  
Francisco Pérez ◽  
Javier Campos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document