scholarly journals Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA

2014 ◽  
Vol 5 ◽  
Author(s):  
Magdalena R. Osburn ◽  
Douglas E. LaRowe ◽  
Lily M. Momper ◽  
Jan P. Amend
2019 ◽  
Author(s):  
Yamini Jangir ◽  
Amruta A. Karbelkar ◽  
Nicole M. Beedle ◽  
Laura A. Zinke ◽  
Greg Wanger ◽  
...  

ABSTRACTThe terrestrial deep subsurface is host to significant and diverse microbial populations. However, these microbial populations remain poorly characterized, partially due to the inherent difficulty of sampling,in situstudies, and isolating of thein situmicrobes. Motivated by the ability of microbes to gain energy from redox reactions at mineral interfaces, we here presentin situelectrochemical colonization (ISEC) as a method to directly study microbial electron transfer activity and to enable the capture and isolation of electrochemically active microbes. We installed a potentiostatically controlled ISEC reactor containing four working electrodes 1500 m below the surface at the Sanford Underground Research Facility. The working electrodes were poised at different redox potentials, spanning anodic to cathodic, to mimic energy-yielding mineral reducing and oxidizing reactions predicted to occur at this site. We present a 16S rRNA analysis of thein situelectrode-associated microbial communities, revealing the dominance of novel bacterial lineages under cathodic conditions. We also demonstrate that thein situelectrodes can be further used for downstream electrochemical laboratory enrichment and isolation of novel strains. Using this workflow, we isolatedBacillus,Anaerospora,Comamonas,Cupriavidus, andAzonexusstrains from the electrode-attached biomass. Finally, the extracellular electron transfer activity of the electrode-oxidizingComamonasstrain (isolated at −0.19 V vs. SHE and designated WE1-1D1) and the electrode-reducingBacillusstrain (isolated at +0.53 V vs. SHE and designated WE4-1A1-BC) were confirmed in electrochemical reactors. Our study highlights the utility ofin situelectrodes and electrochemical enrichment workflows to shed light on microbial activity in the deep terrestrial subsurface.SIGNIFICANCEA large section of microbial life resides in the deep subsurface, but an organized effort to explore this deep biosphere has only recently begun. A detailed characterization of the resident microbes remains scientifically and technologically challenging due to difficulty in access, sampling, and emulating the complex interactions and energetic landscapes of subsurface communities with standard laboratory techniques. Here we describe an in situ approach that exploits the ability of many microbes to perform extracellular electron transfer to/from solid surfaces such as mineral interfaces in the terrestrial subsurface. By deploying and controlling the potential of in situ electrodes 4850 ft below the surface at the Sanford Underground Research Facility (South Dakota, USA), we highlight the promise of electrochemical techniques for studying active terrestrial subsurface microbial communities and enabling the isolation of electrochemically active microbes.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Maury Goodman

The Deep Underground Neutrino Experiment (DUNE) is a worldwide effort to construct a next-generation long-baseline neutrino experiment based at the Fermi National Accelerator Laboratory. It is a merger of previous efforts and other interested parties to build, operate, and exploit a staged 40 kt liquid argon detector at the Sanford Underground Research Facility 1300 km from Fermilab, and a high precision near detector, exposed to a 1.2 MW, tunableνbeam produced by the PIP-II upgrade by 2024, evolving to a power of 2.3 MW by 2030. The neutrino oscillation physics goals and the status of the collaboration and project are summarized in this paper.


2020 ◽  
Vol 50 ◽  
pp. 2060002
Author(s):  
David Woodward

LUX (Large Underground Xenon) was a dark matter experiment, which was housed at the Sanford Underground Research Facility (SURF) in South Dakota until late 2016, and previously set world-leading limits on Weakly Interacting Massive Particles (WIMPs), axions and axion-like particles (ALPs). This proceeding presents an overview of the LUX experiment and discusses the most recent analysis efforts, which are probing various dark matter models and detection techniques. In particular, studies of signals from inelastic scattering processes and of single scintillation photon events have improved the sensitivity of the experiment to low mass WIMPs. Additionally, a model-independent search for modulations in the LUX electron recoil rate is presented, demonstrating the most sensitive annual modulation search to date.


2014 ◽  
Vol 31 (21) ◽  
pp. 215003 ◽  
Author(s):  
M Coughlin ◽  
J Harms ◽  
N Christensen ◽  
V Dergachev ◽  
R DeSalvo ◽  
...  

2017 ◽  
Vol 93 ◽  
pp. 70-75 ◽  
Author(s):  
N. Abgrall ◽  
E. Aguayo ◽  
F.T. Avignone ◽  
A.S. Barabash ◽  
F.E. Bertrand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document