mineral interfaces
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Arunima Bhattacharjee ◽  
Odeta Qafoku ◽  
Jocelyn A Richardson ◽  
Lindsey N Anderson ◽  
Kaitlyn Schwarz ◽  
...  

Soil fungi facilitate the translocation of inorganic nutrients from soil minerals to other microorganisms and plants. This ability is particularly advantageous in impoverished soils, because fungal mycelial networks can bridge otherwise spatially disconnected and inaccessible nutrient hotspots. However, the molecular mechanisms underlying fungal mineral weathering and transport through soil remains poorly understood. Here, we addressed this knowledge gap by directly visualizing nutrient acquisition and transport through fungal hyphae in a mineral doped soil micromodel using a multimodal imaging approach. We observed that Fusarium sp. DS 682, a representative of common saprotrophic soil fungi, exhibited a mechanosensory response (thigmotropism) around obstacles and through pore spaces (~12 μm) in the presence of minerals. The fungus incorporated and translocated potassium (K) from K-rich mineral interfaces, as evidenced by visualization of mineral derived nutrient transport and unique K chemical moieties following fungal induced mineral weathering. Specific membrane transport proteins were expressed in the presence of minerals, including those involved in oxidative phosphorylation pathways and transmembrane transport of small molecular weight organic acids. This study establishes the significance of fungal biology and nutrient translocation mechanisms in maintaining fungal growth under water and nutrient limitations in a soil-like microenvironment.


2021 ◽  
pp. 125485
Author(s):  
Chang Zhu ◽  
Qian Wang ◽  
Xiaoxiao Huang ◽  
Tingting Li ◽  
Gang Yang
Keyword(s):  

2021 ◽  
pp. 1-12
Author(s):  
Alexander Kalintsev ◽  
Joël Brugger ◽  
Barbara Etschmann ◽  
Rahul Ram

Abstract At present, a significant portion of rare-earth elements (REEs) are sourced from weathering profiles. The mineralogy of the protolith plays an important role in controlling the fate of REEs during weathering, as accessory minerals contain the bulk the REE budget in most rocks, and different minerals vary in their susceptibilities to weathering processes. REE supergene deposits (‘adsorption clay deposits’) are associated with deep weathering in tropical environments, which often precludes characterisation of the incipient steps in REE liberation from their host minerals in the protolith. Here we have targeted a weathered REE-enriched lithology from a sub-arid environment undergoing relatively rapid uplift, namely the Yerila Gneiss from the Northern Flinders Ranges, Australia, where regolith was shallow or absent and parent rock material had yet to completely break down. Results from X-ray fluorescence mapping, scanning electron microscopy (SEM), SEM-focussed ion beam milling (FIB-SEM), inductively-coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS highlight the migration pathways of REEs and associated U and Th from allanite-(Ce) grains that are the main REE host within Yerila Gneiss material. Migration of light REEs and Th away from the allanite-(Ce) grains via radial cracks resulting from allanite-(Ce) metamictisation was interpreted to result from weathering, as Ce is partially present in its tetravalent oxidation state and Th mobility is most easily explained by the involvement of organic ligands. FIB-SEM provides further evidence for the importance of biogenic processes in REE+U/Th mobility and fractionation in uranothorite-associated spheroidal structures associated with the weathering of allanite-(Ce). Organic carbon was also found in association with a xenotime-(Y) grain; in this case, REE liberation is most likely a by-product of biogenic phosphate utilisation. These results highlight that local controls (at mineral interfaces) mediated by biota and/or biogenic organic matter can control the initiation of REE (+Th,U) mobilisation during weathering.


2021 ◽  
Vol 106 (1) ◽  
pp. 97-104
Author(s):  
Haoyang Zhou ◽  
Richard Wirth ◽  
Sarah A. Gleeson ◽  
Anja Schreiber ◽  
Sathish Mayanna

Abstract Recent studies have identified gold nanoparticles in ores in a range of deposit types, but little is known about their formation processes. In this contribution, gold-bearing magnetite from the well-documented, world-class Beiya Au deposit, China, was investigated in terms of microstructure and crystallography at the nanoscale. We present the first three-dimensional (3D) focused ion beam/scanning electron microscopy (FIB/SEM) tomography of the distribution of gold nanoparticles in nanopores in the low-Si magnetite. The porous low-Si magnetite, which overprints an earlier generation of silician magnetite, was formed by a coupled dissolution-reprecipitation reaction (CDRR). The extrinsic changes in thermodynamic conditions (e.g., S content and temperature) of the hydrothermal fluids resulted in the CDRR in magnetite and the disequilibrium of Au-Bi melts. The gold nanoparticles crystallized from Au-supersaturated fluids originating from the disequilibrium of Au-Bi melts and grew in two ways depending on the intrinsic crystal structure and pore textures: (1) heteroepitaxial growth utilizing the (111) lattice planes of magnetite, and (2) randomly oriented nucleation and growth. Therefore, this study unravels how intrinsic and extrinsic factors drove the formation of gold nanoparticles at fluid-mineral interfaces.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Angela R. Possinger ◽  
Michael J. Zachman ◽  
Akio Enders ◽  
Barnaby D. A. Levin ◽  
David A. Muller ◽  
...  

AbstractThe capacity of soil as a carbon (C) sink is mediated by interactions between organic matter and mineral phases. However, previously proposed layered accumulation of organic matter within aggregate organo–mineral microstructures has not yet been confirmed by direct visualization at the necessary nanometer-scale spatial resolution. Here, we identify disordered micrometer-size organic phases rather than previously reported ordered gradients in C functional groups. Using cryo-electron microscopy with electron energy loss spectroscopy (EELS), we show organo–organic interfaces in contrast to exclusively organo–mineral interfaces. Single-digit nanometer-size layers of C forms were detected at the organo–organic interface, showing alkyl C and nitrogen (N) enrichment (by 4 and 7%, respectively). At the organo–mineral interface, 88% (72–92%) and 33% (16–53%) enrichment of N and oxidized C, respectively, indicate different stabilization processes than at organo–organic interfaces. However, N enrichment at both interface types points towards the importance of N-rich residues for greater C sequestration.


2020 ◽  
Author(s):  
Gan Duan ◽  
Joel Brugger ◽  
Rahul Ram ◽  
Yan Xing ◽  
Barbara Etschmann

Abstract The evolution of hydrothermal fluids during metasomatic and/or hydrothermal processes is responsible for the formation of ore deposits and associated alteration. In systems with well-developed breccia and fractures, mineral reactions are largely driven by decompression boiling, fluid cooling or external fluid mixing, but in less permeable rocks, elements exchanges occur at fluid-mineral interfaces, resulting in a self-evolved fluid-mineral reaction system. However, the dynamic fluid evolution leading to large-scale (km) alteration remains poorly understood. We observed experimentally that the sequential sodic and potassic alterations associated with mineralization in large ore deposits, in particular Iron Oxide Copper Gold (IOCG) deposits, can occur via a single self-evolved, originally Na-only, hydrothermal fluid, driven by a positive feedback between equilibrium and kinetic factors. Albite formed first upon reaction of sanidine ((K,Na)AlSi3O8) with a NaCl fluid at 600˚C, 2 kbar. However, with increasing reaction time, some of the initially formed albite was in-turn replaced by K-feldspar (KAlSi3O8). Fluorine accelerated the process, resulting in nearly complete back-replacement of albite within 1 day. These experiments demonstrate that potassic alteration can be induced by Na-rich fluids, and pervasive sequential sodic and potassic alterations do not necessarily reflect near-equilibrium, externally-driven changes in fluid alkali contents.


Langmuir ◽  
2020 ◽  
Vol 36 (35) ◽  
pp. 10293-10306
Author(s):  
Peter Thissen

2020 ◽  
Vol 34 (5) ◽  
pp. 5611-5622 ◽  
Author(s):  
Ashit Rao ◽  
Saravana Kumar ◽  
Carla Annink ◽  
Duy Le-Anh ◽  
Subhash C. Ayirala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document