scholarly journals Expression and Functional Characterization of Various Chaperon-Usher Fimbriae, Curli Fimbriae, and Type 4 Pili of Enterohemorrhagic Escherichia coli O157:H7 Sakai

2020 ◽  
Vol 11 ◽  
Author(s):  
Laura Elpers ◽  
Michael Hensel
2005 ◽  
Vol 71 (8) ◽  
pp. 4875-4878 ◽  
Author(s):  
Andreas Janka ◽  
Georg Becker ◽  
Anne-Katharina Sonntag ◽  
Martina Bielaszewska ◽  
Ulrich Dobrindt ◽  
...  

ABSTRACT A mosaic genomic island comprising Shigella resistance locus (SRL) sequences flanked by segments of Escherichia coli O157:H7 strain EDL933 O islands 43, 81, and 82 was identified in sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− strain 493/89. This mosaic island is absent from strain EDL933. PCR targeting the SRL-related sequence is a useful tool to distinguish SF EHEC O157:H− from EHEC O157:H7.


2012 ◽  
Vol 78 (18) ◽  
pp. 6592-6599 ◽  
Author(s):  
Lauren J. Eberhart ◽  
James R. Deringer ◽  
Kelly A. Brayton ◽  
Ashish A. Sawant ◽  
Thomas E. Besser ◽  
...  

ABSTRACTA novel phenotype was recently identified in which specific strains ofEscherichia coliinhibit competingE. colistrains via a mechanism that was designated “proximity-dependent inhibition” (PDI). PDI-expressing (PDI+)E. coliis known to inhibit susceptible (PDI−)E. colistrains, including several enterohemorrhagic (EHEC) and enterotoxigenic (ETEC)E. colistrains. In this study, every strain from a genetically diverse panel ofE. coliO157:H7 (n= 25) and additional strains ofE. coliserovar O26 were susceptible to the PDI phenotype. LIVE/DEAD staining was consistent with inhibition by killing of susceptible cells. Comparative genome analysis identified the genetic component of PDI, which is composed of a plasmid-borne (Incl1) operon encoding a putative microcin and associated genes for transport, immunity, and microcin activation. Transfer of the plasmid to a PDI−strain resulted in transfer of the phenotype, and deletion of the genes within the operon resulted in loss of the inhibition phenotype. Deletion of chromosomally encodedtolCalso resulted in loss of the inhibitory phenotype, and this confirmed that the putative microcin is most likely secreted via a type I secretion pathway. Deletion of an unrelated plasmid gene did not affect the PDI phenotype. Quantitative reverse transcription (RT)-PCR demonstrated that microcin expression is correlated with logarithmic-phase growth. The ability to inhibit a diversity ofE. colistrains indicates that this microcin may influence gut community composition and could be useful for control of important enteric pathogens.


2004 ◽  
Vol 67 (3) ◽  
pp. 486-492 ◽  
Author(s):  
GERRY P. SCHAMBERGER ◽  
FRANCISCO DIEZ-GONZALEZ

A previously identified set of anti– Escherichia coli O157:H7 colicinogenic E. coli were characterized to assess the suitability of these isolates as a preharvest food safety intervention in cattle. This collection of 23 E. coli strains were screened for virulence factors, antibiotic resistance, type of colicin(s) present, and their ability to inhibit other pathogenic E. coli. With the use of PCR, pathogen genes were detected in six of the 23 colicinogenic E. coli. When the nonpathogenic strains were assessed for antibiotic resistance, four strains showed resistance to at least one antibiotic. The remaining set of 14 strains were evaluated for the presence of previously identified colicins. Seven colicins (B, E1, E2/E7, E7, Ia/Ib, K, and M) were detected. One half of the strains possessed multiple types of colicins. The most commonly detected colicins were B, E2/E7, and M, which were found in six strains each. DNA sequencing was also performed in order to classify the E2/E7 colicins separately from E7 colicins. The 14 colicinogenic E. coli also were evaluated for their ability to inhibit 10 different non-O157 pathogenic E. coli. Six of the colicinogenic E. coli were capable of inhibiting all 10 pathogens, and the remaining eight strains could each inhibit between six to eight of the pathogenic E. coli. This strain collection has great potential for inhibiting E. coli O157:H7 in cattle.


Glycobiology ◽  
2012 ◽  
Vol 22 (8) ◽  
pp. 1092-1102 ◽  
Author(s):  
Yin Gao ◽  
Bin Liu ◽  
Scott Strum ◽  
John S Schutzbach ◽  
Tatyana N Druzhinina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document