scholarly journals Characterization of a Novel Microcin That Kills Enterohemorrhagic Escherichia coli O157:H7 and O26

2012 ◽  
Vol 78 (18) ◽  
pp. 6592-6599 ◽  
Author(s):  
Lauren J. Eberhart ◽  
James R. Deringer ◽  
Kelly A. Brayton ◽  
Ashish A. Sawant ◽  
Thomas E. Besser ◽  
...  

ABSTRACTA novel phenotype was recently identified in which specific strains ofEscherichia coliinhibit competingE. colistrains via a mechanism that was designated “proximity-dependent inhibition” (PDI). PDI-expressing (PDI+)E. coliis known to inhibit susceptible (PDI−)E. colistrains, including several enterohemorrhagic (EHEC) and enterotoxigenic (ETEC)E. colistrains. In this study, every strain from a genetically diverse panel ofE. coliO157:H7 (n= 25) and additional strains ofE. coliserovar O26 were susceptible to the PDI phenotype. LIVE/DEAD staining was consistent with inhibition by killing of susceptible cells. Comparative genome analysis identified the genetic component of PDI, which is composed of a plasmid-borne (Incl1) operon encoding a putative microcin and associated genes for transport, immunity, and microcin activation. Transfer of the plasmid to a PDI−strain resulted in transfer of the phenotype, and deletion of the genes within the operon resulted in loss of the inhibition phenotype. Deletion of chromosomally encodedtolCalso resulted in loss of the inhibitory phenotype, and this confirmed that the putative microcin is most likely secreted via a type I secretion pathway. Deletion of an unrelated plasmid gene did not affect the PDI phenotype. Quantitative reverse transcription (RT)-PCR demonstrated that microcin expression is correlated with logarithmic-phase growth. The ability to inhibit a diversity ofE. colistrains indicates that this microcin may influence gut community composition and could be useful for control of important enteric pathogens.

2005 ◽  
Vol 71 (8) ◽  
pp. 4875-4878 ◽  
Author(s):  
Andreas Janka ◽  
Georg Becker ◽  
Anne-Katharina Sonntag ◽  
Martina Bielaszewska ◽  
Ulrich Dobrindt ◽  
...  

ABSTRACT A mosaic genomic island comprising Shigella resistance locus (SRL) sequences flanked by segments of Escherichia coli O157:H7 strain EDL933 O islands 43, 81, and 82 was identified in sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− strain 493/89. This mosaic island is absent from strain EDL933. PCR targeting the SRL-related sequence is a useful tool to distinguish SF EHEC O157:H− from EHEC O157:H7.


2013 ◽  
Vol 79 (6) ◽  
pp. 1934-1941 ◽  
Author(s):  
Chun Chen ◽  
Carrie R. Lewis ◽  
Kakolie Goswami ◽  
Elisabeth L. Roberts ◽  
Chitrita DebRoy ◽  
...  

ABSTRACTProphages make up 12% of the enterohemorrhagicEscherichia coligenome and play prominent roles in the evolution and virulence of this food-borne pathogen. Acquisition and loss of and rearrangements within prophage regions are the primary causes of differences in pulsed-field gel electrophoresis (PFGE) patterns among strains ofE. coliO157:H7. Sp11 and Sp12 are two tandemly integrated and putatively defective prophages carried byE. coliO157:H7 strain Sakai. In this study, we identified 3 classes of deletions that occur within the Sp11-Sp12 region, at a frequency of ca. 7.74 × 10−4. One deletion resulted in a precise excision of Sp11, and the other two spanned the junction of Sp11 and Sp12. All deletions resulted in shifts in the XbaI fragment pattern observed by PFGE. We sequenced the inducible prophage pool of Sakai but did not identify any mature phage particles corresponding to either Sp11 or Sp12. Deletions containingpchBandpsrC, which are Sp11-carried genes encoding proteins known or suspected to regulate type III secretion, did not affect the secretion levels of the EspA or EspB effector. Alignment of the Sp11-Sp12 DNA sequence with its corresponding regions in otherE. coliO157:H7 and O55:H7 strains suggested that homologous recombination rather than integrase-mediated excision is the mechanism behind these deletions. Therefore, this study provides a mechanism behind the previously observed genetic instability of this genomic region ofE. coliO157:H7.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 796
Author(s):  
Kosuke Takada ◽  
Kotone Hama ◽  
Takaomi Sasaki ◽  
Yuichi Otsuka

The toxin-antitoxin (TA) genetic modules control various bacterial events, such as plasmid maintenance, persister cell formation, and phage defense. They also exist in mobile genetic elements, including prophages; however, their physiological roles remain poorly understood. Here, we demonstrate that hokW-sokW, a putative TA locus encoded in Sakai prophage 5 (Sp5) in enterohemorrhagic Escherichia coli O157: H7 Sakai strain, functions as a type I TA system. Bacterial growth assays showed that the antitoxic activity of sokW RNA against HokW toxin partially requires an endoribonuclease, RNase III, and an RNA chaperone, Hfq. We also demonstrated that hokW-sokW assists Sp5-mediated lysis of E. coli cells when prophage induction is promoted by the DNA-damaging agent mitomycin C (MMC). We found that MMC treatment diminished sokW RNA and increased both the expression level and inner membrane localization of HokW in a RecA-dependent manner. Remarkably, the number of released Sp5 phages decreased by half in the absence of hokW-sokW. These results suggest that hokW-sokW plays a novel role as a TA system that facilitates the release of Sp5 phage progeny through E. coli lysis.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Tracy H. Hazen ◽  
Jane Michalski ◽  
Sushma Nagaraj ◽  
Iruka N. Okeke ◽  
David A. Rasko

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe infantile diarrhea in developing countries. Previous research has focused on the diversity of the EPEC virulence plasmid, whereas less is known regarding the genetic content and distribution of antibiotic resistance plasmids carried by EPEC. A previous study demonstrated that in addition to the virulence plasmid, reference EPEC strain B171 harbors a second, larger plasmid that confers antibiotic resistance. To further understand the genetic diversity and dissemination of antibiotic resistance plasmids among EPEC strains, we describe the complete sequence of an antibiotic resistance plasmid from EPEC strain B171. The resistance plasmid, pB171_90, has a completed sequence length of 90,229 bp, a GC content of 54.55%, and carries protein-encoding genes involved in conjugative transfer, resistance to tetracycline (tetA), sulfonamides (sulI), and mercury, as well as several virulence-associated genes, including the transcriptional regulator hha and the putative calcium sequestration inhibitor (csi). In silico detection of the pB171_90 genes among 4,798 publicly available E. coli genome assemblies indicates that the unique genes of pB171_90 (csi and traI) are primarily restricted to genomes identified as EPEC or enterotoxigenic E. coli. However, conserved regions of the pB171_90 plasmid containing genes involved in replication, stability, and antibiotic resistance were identified among diverse E. coli pathotypes. Interestingly, pB171_90 also exhibited significant similarity with a sequenced plasmid from Shigella dysenteriae type I. Our findings demonstrate the mosaic nature of EPEC antibiotic resistance plasmids and highlight the need for additional sequence-based characterization of antibiotic resistance plasmids harbored by pathogenic E. coli.


2004 ◽  
Vol 67 (3) ◽  
pp. 486-492 ◽  
Author(s):  
GERRY P. SCHAMBERGER ◽  
FRANCISCO DIEZ-GONZALEZ

A previously identified set of anti– Escherichia coli O157:H7 colicinogenic E. coli were characterized to assess the suitability of these isolates as a preharvest food safety intervention in cattle. This collection of 23 E. coli strains were screened for virulence factors, antibiotic resistance, type of colicin(s) present, and their ability to inhibit other pathogenic E. coli. With the use of PCR, pathogen genes were detected in six of the 23 colicinogenic E. coli. When the nonpathogenic strains were assessed for antibiotic resistance, four strains showed resistance to at least one antibiotic. The remaining set of 14 strains were evaluated for the presence of previously identified colicins. Seven colicins (B, E1, E2/E7, E7, Ia/Ib, K, and M) were detected. One half of the strains possessed multiple types of colicins. The most commonly detected colicins were B, E2/E7, and M, which were found in six strains each. DNA sequencing was also performed in order to classify the E2/E7 colicins separately from E7 colicins. The 14 colicinogenic E. coli also were evaluated for their ability to inhibit 10 different non-O157 pathogenic E. coli. Six of the colicinogenic E. coli were capable of inhibiting all 10 pathogens, and the remaining eight strains could each inhibit between six to eight of the pathogenic E. coli. This strain collection has great potential for inhibiting E. coli O157:H7 in cattle.


1997 ◽  
Vol 60 (8) ◽  
pp. 891-897 ◽  
Author(s):  
L. M. HUDSON ◽  
J. CHEN ◽  
A. R. HILL ◽  
M. W. GRIFFITHS

Outbreaks of enterohemorrhagic Escherichia coli O157:H7 have been commonly associated with products derived from ground beef, but recently the organism has been implicated as the causative agent in outbreaks involving yogurt and cheese. This finding has raised concern about the potential for its growth and survival in fermented dairy products. A bioluminescent strain of E. coli O157:H7 was used to determine postprocessing survival in yogurt with live cultures at pH 4.17, 4.39, and 4.47 stored at 4 and 10°C. In addition, survival of E. coli O157:H7 was monitored during the manufacture of Cottage, Colby, Romano, and Feta cheeses. Results indicated survival for 8 and 5 days at 4 and 10°C respectively in yogurt at pH 4.17, 17 and 15 days at 4 and 10°C respectively in yogurt at pH 4.39, and 17days at both 4 and 10°C in yogurt at pH 4.47. E. coli O157:H7 did not survive cooking procedures at 56°C in Cottage cheese. However, the pathogen survived for 27, 30, and 27 days in Colby, Romano, and Feta cheeses respectively. A high correlation of r2 > 0.89 was obtained between counts of bioluminescenct colonies and standard plate count for all yogurt and cheese varieties, indicating that bioluminescence was a sensitive and rapid indicator of cellular viability for E. coli O157:H7. Survival of the pathogen, as indicated by this method, is possible in highly acidic environments even at refrigeration temperatures. This poses a potential hazard should postprocessing contamination occur.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Charles T. Lauhon

ABSTRACT In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli. Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ. Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification. IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli. These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.


2012 ◽  
Vol 78 (19) ◽  
pp. 6799-6803 ◽  
Author(s):  
Sam Abraham ◽  
David M. Gordon ◽  
James Chin ◽  
Huub J. M. Brouwers ◽  
Peter Njuguna ◽  
...  

ABSTRACTThe role ofEscherichia colias a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterizeEscherichia coliorganisms (n= 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed thatE. coliisolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P< 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains ofE. colibut also that strains from different regions have different characteristics.


Sign in / Sign up

Export Citation Format

Share Document