scholarly journals Multi-Omic Analyses Reveal Habitat Adaptation of Marine Cyanobacterium Synechocystis sp. PCC 7338

2021 ◽  
Vol 12 ◽  
Author(s):  
Yujin Jeong ◽  
Seong-Joo Hong ◽  
Sang-Hyeok Cho ◽  
Seonghoon Yoon ◽  
Hookeun Lee ◽  
...  

Cyanobacteria are considered as promising microbial cell factories producing a wide array of bio-products. Among them, Synechocystis sp. PCC 7338 has the advantage of growing in seawater, rather than requiring arable land or freshwater. Nonetheless, how this marine cyanobacterium grows under the high salt stress condition remains unknown. Here, we determined its complete genome sequence with the embedded regulatory elements and analyzed the transcriptional changes in response to a high-salt environment. Complete genome sequencing revealed a 3.70 mega base pair genome and three plasmids with a total of 3,589 genes annotated. Differential RNA-seq and Term-seq data aligned to the complete genome provided genome-wide information on genetic regulatory elements, including promoters, ribosome-binding sites, 5′- and 3′-untranslated regions, and terminators. Comparison with freshwater Synechocystis species revealed Synechocystis sp. PCC 7338 genome encodes additional genes, whose functions are related to ion channels to facilitate the adaptation to high salt and high osmotic pressure. Furthermore, a ferric uptake regulator binding motif was found in regulatory regions of various genes including SigF and the genes involved in energy metabolism, suggesting the iron-regulatory network is connected to not only the iron acquisition, but also response to high salt stress and photosynthesis. In addition, the transcriptomics analysis demonstrated a cyclic electron transport through photosystem I was actively used by the strain to satisfy the demand for ATP under high-salt environment. Our comprehensive analyses provide pivotal information to elucidate the genomic functions and regulations in Synechocystis sp. PCC 7338.

2018 ◽  
Vol 254 ◽  
pp. 151-156 ◽  
Author(s):  
Wenming Zhang ◽  
Junru Zhu ◽  
Xinggui Zhu ◽  
Meng Song ◽  
Ting Zhang ◽  
...  

FEBS Letters ◽  
2006 ◽  
Vol 580 (30) ◽  
pp. 6783-6788 ◽  
Author(s):  
Koji Yamaguchi ◽  
Yoshihiro Takahashi ◽  
Thomas Berberich ◽  
Akihiko Imai ◽  
Atsushi Miyazaki ◽  
...  

2012 ◽  
Vol 78 (19) ◽  
pp. 7128-7131 ◽  
Author(s):  
Elise Beuls ◽  
Pauline Modrie ◽  
Cédric Deserranno ◽  
Jacques Mahillon

ABSTRACTConjugation experiments withBacillus thuringiensisand transfer kinetics demonstrated that salt stress has a positive impact on plasmid transfer efficiency. Compared to standard osmotic conditions (0.5% NaCl), plasmid transfer occurred more rapidly, and at higher frequencies (>100-fold), when bacteria were exposed to a high-salt stress (5% NaCl) in liquid brain heart infusion (BHI). Under milder salt conditions (2.5% NaCl), only a 10-fold effect was observed in Luria-Bertani broth and no difference was detected in BHI. These observations are particularly relevant in the scope of potential gene exchanges among members of theBacillus cereusgroup, which includes food-borne contaminants and pathogens.


2021 ◽  
Vol 948 (1) ◽  
pp. 012049
Author(s):  
Y R E Wulandari ◽  
T Triadiati ◽  
Y C Sulistyaningsih ◽  
A Suprayogi ◽  
M Rahminiwati

Abstract Mulberry (Morus sp.) plant is used to feed silkworms, and the leaves contain compounds with medicinal properties of secondary metabolites. However, the content of these compounds tends to increase under stress conditions, for instance, salt stress. This study, therefore, aimed to determine the accessions of mulberry with tolerance for salt stress. The stem cuttings of seven accessions from 5 regions, Bogor, Pati, Situbondo, Bali, and Gowa, were planted following a factorial randomized block design with 3 replications. Subsequently, the first factor using the accessions, and the second factor using NaCl solution (0.0%, 0.2%, 0.3%, and 0.4% concentrations) were performed. The variables observed were growth (leaves number, plant height, and shoots number), photosynthesis rate, total chlorophyll, and proline content. The results showed that the M6 accession exhibited tolerance under high salt stress, based on the leaves number, plant height, shoot number, photosynthesis rate, and proline content. Furthermore, an increase in salt concentration was discovered to cause a decrease in growth, photosynthesis rate, and total chlorophyll content. Also, proline accumulation stimulated by high salt stress possibly plays an important role in salinity tolerance.


Sign in / Sign up

Export Citation Format

Share Document