scholarly journals Towards Bioleaching of a Vanadium Containing Magnetite for Metal Recovery

2021 ◽  
Vol 12 ◽  
Author(s):  
Sören Bellenberg ◽  
Stephanie Turner ◽  
Laura Seidel ◽  
Nathan van Wyk ◽  
Ruichi Zhang ◽  
...  

Vanadium – a transition metal – is found in the ferrous-ferric mineral, magnetite. Vanadium has many industrial applications, such as in the production of high-strength low-alloy steels, and its increasing global industrial consumption requires new primary sources. Bioleaching is a biotechnological process for microbially catalyzed dissolution of minerals and wastes for metal recovery such as biogenic organic acid dissolution of bauxite residues. In this study, 16S rRNA gene amplicon sequencing was used to identify microorganisms in Nordic mining environments influenced by vanadium containing sources. These data identified gene sequences that aligned to the Gluconobacter genus that produce gluconic acid. Several strategies for magnetite dissolution were tested including oxidative and reductive bioleaching by acidophilic microbes along with dissimilatory reduction by Shewanella spp. that did not yield significant metal release. In addition, abiotic dissolution of the magnetite was tested with gluconic and oxalic acids, and yielded 3.99 and 81.31% iron release as a proxy for vanadium release, respectively. As a proof of principle, leaching via gluconic acid production by Gluconobacter oxydans resulted in a maximum yield of 9.8% of the available iron and 3.3% of the vanadium. Addition of an increased concentration of glucose as electron donor for gluconic acid production alone, or in combination with calcium carbonate to buffer the pH, increased the rate of iron dissolution and final vanadium recoveries. These data suggest a strategy of biogenic organic acid mediated vanadium recovery from magnetite and point the way to testing additional microbial species to optimize the recovery.

1989 ◽  
Vol 67 (6) ◽  
pp. 404-408 ◽  
Author(s):  
Hiroshi Sakurai ◽  
Hang Woo Lee ◽  
Seigo Sato ◽  
Sukekuni Mukataka ◽  
Joji Takahashi

2009 ◽  
Vol 75 (12) ◽  
pp. 4162-4174 ◽  
Author(s):  
Patrice de Werra ◽  
Maria Péchy-Tarr ◽  
Christoph Keel ◽  
Monika Maurhofer

ABSTRACT The rhizobacterium Pseudomonas fluorescens CHA0 promotes the growth of various crop plants and protects them against root diseases caused by pathogenic fungi. The main mechanism of disease suppression by this strain is the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). Direct plant growth promotion can be achieved through solubilization of inorganic phosphates by the production of organic acids, mainly gluconic acid, which is one of the principal acids produced by Pseudomonas spp. The aim of this study was to elucidate the role of gluconic acid production in CHA0. Therefore, mutants were created with deletions in the genes encoding glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad), required for the conversion of glucose to gluconic acid and gluconic acid to 2-ketogluconate, respectively. These enzymes should be of predominant importance for rhizosphere-colonizing biocontrol bacteria, as major carbon sources provided by plant root exudates are made up of glucose. Our results show that the ability of strain CHA0 to acidify its environment and to solubilize mineral phosphate is strongly dependent on its ability to produce gluconic acid. Moreover, we provide evidence that the formation of gluconic acid by CHA0 completely inhibits the production of PLT and partially inhibits that of DAPG. In the Δgcd mutant, which does not produce gluconic acid, the enhanced production of antifungal compounds was associated with improved biocontrol activity against take-all disease of wheat, caused by Gaeumannomyces graminis var. tritici. This study provides new evidence for a close association of gluconic acid metabolism with antifungal compound production and biocontrol activity in P. fluorescens CHA0.


1940 ◽  
Vol 32 (1) ◽  
pp. 107-111 ◽  
Author(s):  
N. Porges ◽  
T. F. Clark ◽  
E. A. Gastrock

Sign in / Sign up

Export Citation Format

Share Document