scholarly journals Blocking Protein Phosphatase 1 [PP1] Prevents Loss of Tether Elasticity in Anaphase Crane-Fly Spermatocytes

2021 ◽  
Vol 8 ◽  
Author(s):  
Arthur Forer ◽  
Aisha Adil ◽  
Michael W. Berns

In normal anaphase cells, telomeres of each separating chromosome pair are connected to each other by tethers. Tethers are elastic at the start of anaphase: arm fragments cut from anaphase chromosomes in early anaphase move across the equator to the oppositely-moving chromosome, telomere moving toward telomere. Tethers become inelastic later in anaphase as the tethers become longer: arm fragments no longer move to their partners. When early anaphase cells are treated with Calyculin A (CalA), an inhibitor of protein phosphatases 1 (PP1) and 2A (PP2A), at the end of anaphase chromosomes move backward from the poles, with telomeres moving toward partner telomeres. Experiments described herein show that in cells treated with CalA, backwards movements are stopped in a variety of ways, by cutting the tethers of backwards moving chromosomes, by severing arms of backwards moving chromosomes, by severing arms before the chromosomes reach the poles, and by cutting the telomere toward which a chromosome is moving backwards. Measurements of arm-fragment velocities show that CalA prevents tethers from becoming inelastic as they lengthen. Since treatment with CalA causes tethers to remain elastic throughout anaphase and since inhibitors of PP2A do not cause the backwards movements, PP1 activity during anaphase causes the tethers to become inelastic.

2000 ◽  
Vol 68 (3) ◽  
pp. 1350-1358 ◽  
Author(s):  
George A. Orr ◽  
Craig Werner ◽  
Jun Xu ◽  
Marcia Bennett ◽  
Louis M. Weiss ◽  
...  

ABSTRACT We cloned two novel Trypanosoma cruzi proteins by using degenerate oligonucleotide primers prepared against conserved domains in mammalian serine/threonine protein phosphatases 1, 2A, and 2B. The isolated genes encoded proteins of 323 and 330 amino acids, respectively, that were more homologous to the catalytic subunit of human protein phosphatase 1 than to those of human protein phosphatase 2A or 2B. The proteins encoded by these genes have been tentatively designated TcPP1α and TcPP1β. Northern blot analysis revealed the presence of a major 2.3-kb mRNA transcript hybridizing to each gene in both the epimastigote and metacyclic trypomastigote developmental stages. Southern blot analysis suggests that each protein phosphatase 1 gene is present as a single copy in the T. cruzi genome. The complete coding region for TcPP1β was expressed inEscherichia coli by using a vector, pTACTAC, with thetrp-lac hybrid promoter. The recombinant protein from the TcPP1β construct displayed phosphatase activity toward phosphorylasea, and this activity was preferentially inhibited by calyculin A (50% inhibitory concentration [IC50], ∼2 nM) over okadaic acid (IC50, ∼100 nM). Calyculin A, but not okadaic acid, had profound effects on the in vitro replication and morphology of T. cruzi epimastigotes. Low concentrations of calyculin A (1 to 10 nM) caused growth arrest. Electron microscopic studies of the calyculin A-treated epimastigotes revealed that the organisms underwent duplication of organelles, including the flagellum, kinetoplast, and nucleus, but were incapable of completing cell division. At concentrations higher than 10 nM, or upon prolonged incubation at lower concentrations, the epimastigotes lost their characteristic elongated spindle shape and had a more rounded morphology. Okadaic acid at concentrations up to 1 μM did not result in growth arrest or morphological alterations to T. cruziepimastigotes. Calyculin A, but not okadaic acid, was also a potent inhibitor of the dephosphorylation of 32P-labeled phosphorylase a by T. cruzi epimastigotes and metacyclic trypomastigote extracts. These inhibitor studies suggest that in T. cruzi, type 1 protein phosphatases are important for the completion of cell division and for the maintenance of cell shape.


1997 ◽  
Vol 272 (37) ◽  
pp. 23312-23316 ◽  
Author(s):  
Mika K. Lindvall ◽  
Petri M. Pihko ◽  
Ari M. P. Koskinen

2002 ◽  
Vol 58 (s1) ◽  
pp. c103-c103
Author(s):  
A. Kita ◽  
S. Matsunaga ◽  
A. Takai ◽  
H. Kataiwa ◽  
T. Wakimoto ◽  
...  

1996 ◽  
Vol 270 (3) ◽  
pp. C898-C902 ◽  
Author(s):  
T. Krarup ◽  
P. B. Dunham

Osmotic swelling of dog and other mammalian erythrocytes activates Cl-dependent K transport, K-Cl cotransport. This activation can be abolished by nanomolar concentrations of calyculin, a potent inhibitor of serine-threonine protein phosphatases. Therefore, K-Cl cotransport is probably activated by dephosphorylation by a type 1 and/or type 2A protein phosphatase (PP-1 and PP-2A, respectively). This was tested directly by incorporating exogenous protein phosphatases into resealed ghosts made from dog erythrocytes previously exposed to calyculin. K-Cl cotransport was nearly completely inhibited in the ghosts. Incorporation of PP-1 reconstituted K-Cl cotransport. Maximal reconstitution was up to 90% of the control flux in the ghosts and 0.1 U PP-1/ml lysate gave half-maximal reconstitution of cotransport. In contrast, PP-2A had no effect. This result with PP-1 provides direct evidence that K-Cl cotransport is activated by PP-1 in dog erythrocytes. Half-maximal activation of K-Cl cotransport required approximately 180 molecules of PP-1 per ghost.


1995 ◽  
Vol 269 (4) ◽  
pp. C849-C855 ◽  
Author(s):  
I. Bize ◽  
P. B. Dunham

K-Cl cotransport is involved in volume regulation in a number of cell types. Cell swelling stimulates K-Cl cotransport, probably by inhibition of a volume-sensitive kinase. K-Cl cotransport can also be activated by oxidants and thiol reagents. We investigated the effect of H2O2 on K-Cl cotransport of LK sheep red blood cells in an attempt to identify the target of oxidants. H2O2 stimulated K-Cl cotransport. The stimulation was virtually abolished by subsequent incubation with calyculin, a protein phosphatase inhibitor. This suggests that H2O2 stimulates a calyculin-sensitive phosphatase and activates K-Cl cotransport by causing a decrease in phosphorylation of the transporter or a regulatory protein. The thiol reagent N-ethylmaleimide, which stimulates K-Cl cotransport, did not stimulate cotransport further in cells with cotransport activated by staurosporine but did stimulate cotransport further in cells with cotransport activated by H2O2. These results suggest that there are at least two distinct phosphorylation sites on the transporter or a regulator. The results also suggest that the phosphatase is associated with the membrane.


2001 ◽  
Vol 29 (2) ◽  
pp. 114-118 ◽  
Author(s):  
W Zhang ◽  
J Tamura ◽  
M Sakuraya ◽  
T Naruse ◽  
K Kubota

To investigate the possible involvement of protein phosphatase (PP)1 and PP2A in the process of erythropoiesis, we assessed the effect of PP1 and PP2A inhibitors on erythroid colony formation using an in vitro colony formation assay. Okadaic acid (OKA), calyculin A (Cal-A) and tautomycin suppressed colony formation but 1-nor-okadaone did not. These results suggest that PP1 and PP2A both play an important role in erythropoiesis. Furthermore, higher concentrations of tautomycin were needed to suppress colony formation compared to concentrations of OKA and Cal-A. The target enzyme of inhibitors in erythropoiesis may be PP2A.


1994 ◽  
Vol 107 (1) ◽  
pp. 267-273 ◽  
Author(s):  
J.R. Paulson ◽  
W.A. Ciesielski ◽  
B.R. Schram ◽  
P.W. Mesner

It is shown here that treatment of metaphase-arrested HeLa cells with okadaic acid (0.15-2.5 microM) leads to dephosphorylation of histone H1. This effect is presumably due to the specific ability of okadaic acid to inhibit protein phosphatases 1 and/or 2A, because okadaic acid tetraacetate, which is not a phosphatase inhibitor, has no effect. Dephosphorylation of H1 does not occur if okadaic acid-treated cells are simultaneously treated with 20 nM calyculin A, or if the okadaic acid concentration is 5.0 microM or greater. The mechanism behind this phenomenon is not known. However, the results suggest that the chain of events leading to histone dephosphorylation may be negatively controlled by a protein phosphatase 2A, while the phosphatase which actually dephosphorylates H1 could be a protein phosphatase 1. It remains to be determined whether the phosphatase involved here is the same enzyme as that which dephosphorylates H1 at the end of normal mitosis.


Sign in / Sign up

Export Citation Format

Share Document