resealed ghosts
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 0)

H-INDEX

18
(FIVE YEARS 0)

2015 ◽  
Vol 26 (9) ◽  
pp. 1699-1710 ◽  
Author(s):  
David S. Gokhin ◽  
Roberta B. Nowak ◽  
Joseph A. Khoory ◽  
Alfonso de la Piedra ◽  
Ionita C. Ghiran ◽  
...  

Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (∼25–30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ∼60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane.


Author(s):  
Teresa Janas ◽  
Tadeusz Janas

AbstractNoncovalent DIDS binding to Band 3 (AE1) protein in human erythrocyte membranes, modified by non-penetrating, water soluble 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)-carbodiimide iodide (EAC), was studied at 0°C in the presence of 165 mM KCl. Under experimental conditions applied up to (48 ± 5) % of irreversible chloride self-exchange inhibition was observed. The apparent dissociation constant, KD, for “DIDS-Band 3” complex, determined from the chloride transport experiments, was (34 ± 3) nM and (80 ± 12) nM for control and EAC-treated resealed ghosts, respectively. The inhibition constant, Ki, for DIDS was (35 ± 6) nM and (60 ± 8) nM in control and EAC-treated ghosts, respectively. The reduced affinity for DIDS reversible binding was not a result of negative cooperativity of DIDS binding sites of Band 3 oligomer since Hill’s coefficients were indistinguishable from 1 (within the limit error) both for control and EAC-treated ghosts. By using tritium-labeled DIDS, 4,4’-diisothiocyanato-2,2’-stilbenedisulfonate ([3H]DIDS), the association rate constant, k+1 (M−1s−1), was measured. The mean values of (4.3 ± 0.7) × 105 M−1s−1 for control and (2.7 ± 0.7) × 105 M−1s−1 for EAC-treated ghosts were obtained. The mean values for KD, evaluated from [3H]DIDS binding measurements, were (37 ± 9) nM and (90 ± 21) nM for control and EAC-modified ghosts, respectively. The results demonstrate that EAC modification of AE1 reduces about 2-fold the affinity of AE1 for DIDS. It is suggested that half of the subunits are modified near the transport site by EAC.


Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1284-1288 ◽  
Author(s):  
Xiuli An ◽  
Marcela Salomao ◽  
Xinhua Guo ◽  
Walter Gratzer ◽  
Narla Mohandas

Abstract The ternary complex of spectrin, actin, and 4.1R (human erythrocyte protein 4.1) defines the nodes of the erythrocyte membrane skeletal network and is inseparable from membrane stability under mechanical stress. These junctions also contain tropomyosin (TM) and the other actin-binding proteins, adducin, protein 4.9, tropomodulin, and a small proportion of capZ, the functions of which are poorly defined. Here, we have examined the consequences of selective elimination of TM from the membrane. We have shown that the mechanical stability of the membranes of resealed ghosts devoid of TM is grossly, but reversibly, impaired. That the decreased membrane stability of TM-depleted membranes is the result of destabilization of the ternary complex of the network junctions is demonstrated by the strongly facilitated entry into the junctions in situ of a β-spectrin peptide, containing the actin- and 4.1R-binding sites, after extraction of the TM. The stabilizing effect of TM is highly specific, in that it is only the endogenous isotype, and not the slightly longer muscle TM that can bind to the depleted membranes and restore their mechanical stability. These findings have enabled us identify a function for TM in elevating the mechanical stability of erythrocyte membranes by stabilizing the spectrin-actin-4.1R junctional complex.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3688-3688
Author(s):  
Sean C. Murphy ◽  
Souvik Bhattacharjee ◽  
Travis Harrison ◽  
Kasturi Haldar

Abstract Invasion of erythrocytes by malaria parasites requires participation of both parasite ligands and host determinants. Further recent studies show that erythrocyte G protein signaling regulates malarial infection. Many of the Gs-associated signaling components reside on the cytoplasmic leaflet of the erythrocyte plasma membrane, rendering them inaccessible to most extracellular probes. Since erythrocytes are enucleated and terminally differentiated, they cannot be transfected to express exogenous transgenes. We have modified methods of hypotonic lysis and isotonic resealing to generate loaded erythrocyte ghosts that can be efficiently infected by Plasmodium falciparum and sustain normal levels of intraerythrocytic parasite growth and replication. Further, we show that these ghosts can be filled with various membrane-impermeable peptides or other proteinaceous cargoes for studying signaling and transport events inside the erythrocyte. Resealed ghosts morphologically resemble normal erythrocytes, albeit with reduced hemoglobin content. Other measures of erythrocyte function and malarial infection are being investigated. Studies will be presented on the use of ‘reconstituted’ erythrocytes in elucidating mechanisms parasite invasion as well as parasite protein trafficking in erythrocytes infected by P. falciparum.


1999 ◽  
Vol 345 (1) ◽  
pp. 33-41 ◽  
Author(s):  
James M. SALHANY ◽  
Karen A. CORDES ◽  
Renee L. SLOAN

The mechanism of dissociation of the stable dimer of band 3 was investigated during the incubation of isolated erythrocyte membranes or resealed ghosts at 37 °C. The kinetics of changes in the structural and functional integrity of the membrane domain of band 3 (MDB3) were measured and correlated with the change in the Stokes radius of band 3. MDB3 integrity was determined as follows: (1) by measuring the fluorescence emission spectrum of 4,4ʹ-di-isothiocyanostilbene-2,2ʹ-disulphonate (DIDS) bound covalently to MDB3; (2) by measuring the number of DIDS covalent binding sites present after incubation of unlabelled resealed ghosts; and (3) by measuring the anion transport Vmax by using the same resealed ghosts. Incubation of membranes at 37 °C caused the dissociation of band 3 dimers to monomers but only after a lag period lasting approx. 50 h. The observation of such a lag implies that dissociation involves a sequence of molecular events beginning with some type of initial process. We have discovered that this initial process involves a conformation change in MDB3. There was a shift in the fluorescence spectrum for DIDS-labelled band 3 and a decrease in the DIDS binding capacity and transport activity of the unlabelled protein. Incubation of membranes at 4 °C inhibited the conformational change in MDB3 and the dissociation of dimers. Furthermore, no conformational change in MDB3 was observed when erythrocytes were incubated at 37 °C. We suggest that MDB3 unfolding is the molecular event responsible for the subsequent dissociation of stable dimers of band 3 to monomers during the incubation of erythrocyte membranes at 37 °C. The monomers so generated are either not functional in anion exchange or they have an attenuated functionality. The absence of a conformational change for band 3 in erythrocytes might imply that haemolysis perturbs the membrane structure and somehow predisposes band 3 to the conformational change that occurs during incubation at 37 °C.


1999 ◽  
Vol 276 (6) ◽  
pp. C1303-C1311 ◽  
Author(s):  
Orit Aharonovitz ◽  
Nicolas Demaurex ◽  
Michael Woodside ◽  
Sergio Grinstein

Na+/H+exchange is a passive process not requiring expenditure of metabolic energy. Nevertheless, depletion of cellular ATP produces a marked inhibition of the antiport. No evidence has been found for direct binding of nucleotide to exchangers or alteration in their state of phosphorylation, suggesting ancillary factors may be involved. This possibility was tested by comparing the activity of dog red blood cells (RBC) and their resealed ghosts. Immunoblotting experiments using isoform-specific polyclonal and monoclonal antibodies indicated RBC membranes express Na+/H+exchanger isoform 1 (NHE1). In intact RBC, uptake of Na+ was greatly stimulated when the cytosol was acidified. The stimulated uptake was largely eliminated by amiloride and by submicromolar concentrations of the benzoyl guanidinium compound HOE-694, consistent with mediation by NHE1. Although exchange activity could also be elicited by acidification in resealed ghosts containing ATP, the absolute rate of transport was markedly diminished at comparable pH. Dissipation of the pH gradient was ruled out as the cause of diminished transport rate in ghosts. This was accomplished by a “pH clamping” procedure based on continued export of base equivalents by the endogenous anion exchanger. These observations suggest a critical factor required to maintain optimal Na+/H+exchange activity is lost or inactivated during preparation of ghosts. Depletion of ATP, achieved by incubation with 2-deoxy-d-glucose, inhibited Na+/H+exchange in intact RBC, as reported for nucleated cells. In contrast, the rate of exchange was similar in control and ATP-depleted resealed ghosts. Interestingly, the residual rate of Na+/H+exchange in ATP-depleted but otherwise intact cells was similar to the transport rate of ghosts. Therefore, we tentatively conclude that full activation of NHE1 requires both ATP and an additional regulatory factor, which may mediate the action of the nucleotide. Ancillary phosphoproteins or phospholipids or the kinases that mediate their phosphorylation are likely candidates for the regulatory factor(s) that is inactivated or missing in ghosts.


1998 ◽  
Vol 76 (5) ◽  
pp. 715-722 ◽  
Author(s):  
James M Salhany

Stilbenedisulfonates (S) constitute an important class of competitive inhibitors of the anion exchange (AE) function found in plasma membranes of various cell types. I present a brief summary of recent kinetic studies that provide insight into the mechanism of stilbenedisulfonate-chloride competition in binding to human erythrocyte band 3 (AE1) (B), the chloride-bicarbonate exchanger. Reversible stilbenedisulfonate binding follows a two-step mechanism (S + B <–> SB <–> SB*). Several lines of evidence are summarized that show that chloride, stilbenedisulfonates, and band 3 form a ternary complex, with chloride lowering stilbenedisulfonate affinity allosterically, by accelerating the rate of stilbenedisulfonate release. Of particular significance was our evidence demonstrating that extracellular chloride could accelerate stilbenedisulfonate release from its binding site on the outer surface of band 3 in resealed ghosts (i.e., acceleration in the release of a bound competitive inhibitor by a cis substrate). I suggest that the latter result may be consistent with our earlier proposal that band 3 follows a two-site ordered sequential mechanism, where two allosterically linked chloride binding transport sites move back and forth across the membrane together.Key words: band 3, anion transport, red cell membrane, membrane proteins.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2047-2056 ◽  
Author(s):  
Bruno Venerando ◽  
Amelia Fiorilli ◽  
Gian Luigi Croci ◽  
Guido Tettamanti

Abstract The feature of intact human erythrocytes and erythrocyte white ghosts is a unique sialidase activity with acidic optimal pH (acidic sialidase). The treatment of white ghosts with mildly alkaline isotonic solutions at 37°C, like that used to produce resealed ghosts, is accompanied by the expression, together with the acidic sialidase, of a novel sialidase with a pH optimum of 7.2 (neutral sialidase) that remained masked in the inside-out vesicles prepared from white ghosts. Exhaustive treatment of resealed ghosts with Bacillus Thuringiensis phosphatidylinositol-specific phospholipase C causes an almost complete release of the acidic sialidase, with the neutral enzyme remaining totally unaffected. The treatment of resealed ghosts with 1.2% Triton X-100 resulted in the solubilization of only the neutral sialidase, whereas 3.6% octylglucoside also solubilized the acidic sialidase. The neutral enzyme affected not only the artificial substrate but also any sialoderivatives of a ganglioside, glycoprotein, and oligosaccharide nature; the acidic enzyme did not affect sialoglycoproteins. Erythrocyte endogenous gangliosides were hydrolyzed by both sialidases, whereas the endogenous sialoglycoproteins responded to only the neutral enzyme. It was definitely proved that the acidic sialidase is located on the outer erythrocyte membrane surface, so presumably the neutral enzyme has the same location. It could be that the newly discovered neutral sialidase has a physiologic role in the releasing of sialic acid from erythrocytes during the erythrocyte aging process, leading to eventual phagocytosis by macrophages.


Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1684-1693
Author(s):  
Jeanette Libera ◽  
Thomas Pomorski ◽  
Peter Müller ◽  
Andreas Herrmann

The influence of the suspension pH (pHo ) on the transmembrane mobility of spin-labeled phospholipid analogues in the human red blood cell was investigated. The passive transverse diffusion of spin-labeled phospholipid analogues was independent of pHo in the investigated range (5.8 to 8.5). However, upon acidification to pHo 5.8, a significant decrease of the rapid adenosine triphosphate (ATP)-dependent inward movement of aminophospholipids was found at physiologic ionic concentration, whereas a change of pH from 7.4 to 8.5 did not affect this transport. Evidence is given that the intracellular pH affects the active transport of aminophospholipids but not the extracellular pH. Suppression of the ATP-dependent outside-inside redistribution of aminophospholipid analogues by low pH was reversible because original transport activity was re-established upon reneutralization. pH dependence of the active phospholipid transport was not caused by the spin-labeled reporter group or by depletion of intracellular ATP. Because the same influence of pH on aminophospholipid movement could be observed for resealed ghosts, constituents of the red blood cell cytoplasm do not mediate the influence of pH on the ATP-dependent inward movement of aminophospholipids.


Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1684-1693 ◽  
Author(s):  
Jeanette Libera ◽  
Thomas Pomorski ◽  
Peter Müller ◽  
Andreas Herrmann

Abstract The influence of the suspension pH (pHo ) on the transmembrane mobility of spin-labeled phospholipid analogues in the human red blood cell was investigated. The passive transverse diffusion of spin-labeled phospholipid analogues was independent of pHo in the investigated range (5.8 to 8.5). However, upon acidification to pHo 5.8, a significant decrease of the rapid adenosine triphosphate (ATP)-dependent inward movement of aminophospholipids was found at physiologic ionic concentration, whereas a change of pH from 7.4 to 8.5 did not affect this transport. Evidence is given that the intracellular pH affects the active transport of aminophospholipids but not the extracellular pH. Suppression of the ATP-dependent outside-inside redistribution of aminophospholipid analogues by low pH was reversible because original transport activity was re-established upon reneutralization. pH dependence of the active phospholipid transport was not caused by the spin-labeled reporter group or by depletion of intracellular ATP. Because the same influence of pH on aminophospholipid movement could be observed for resealed ghosts, constituents of the red blood cell cytoplasm do not mediate the influence of pH on the ATP-dependent inward movement of aminophospholipids.


Sign in / Sign up

Export Citation Format

Share Document