scholarly journals Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle

Author(s):  
Evelyn Glotzbach-Schoon ◽  
Marta Andreatta ◽  
Andreas Reif ◽  
Heike Ewald ◽  
Christian Tröger ◽  
...  
2002 ◽  
Vol 9 (4) ◽  
pp. 233-247 ◽  
Author(s):  
R. C. B. Silva ◽  
A. P. M. Cruz ◽  
V. Avanzi ◽  
J. Landeira-Fernandez ◽  
M. L. Brandão

Ascending 5-HT projections from the median raphe nucleus (MRN), probably to the hippocampus, are implicated in the acquisition of contextual fear (background stimuli), as assessed by freezing behavior. Foreground cues like light, used as a conditioned stimulus (CS) in classical fear conditioning, also cause freezing through thalamic transmission to the amygdala. As the MRN projects to the hippocampus and amygdala, the role of this raphe nucleus in fear conditioning to explicit cues remains to be explained. Here we analyzed the behavior of rats with MRN electrolytic lesions in a contextual conditioning situation and in a fear-potentiated startle procedure. The animals received MRN electrolytic lesions either before or on the day after two consecutive training sessions in which they were submitted to 10 conditioning trials, each in an experimental chamber (same context) where they. received foot-shocks (0.6 mA, 1 sec) paired to a 4-sec light CS. Seven to ten days later, the animals were submitted to testing sessions for assessing conditioned fear when they were placed for five shocks, and the duration of contextual freezing was recorded. The animals were then submitted to a fear-potentiated startle in response to a 4-sec light-CS, followed by white noise (100 dB, 50 ms). Control rats (sham) tested in the same context showed more freezing than did rats with pre- or post-training MRN lesions. Startle was clearly potentiated in the presence of light CS in the sham-lesioned animals. Whereas pretraining lesions reduced both freezing and fear-potentiated startle, the post-training lesions reduced only freezing to context, without changing the fear-potentiated startle. In a second experiment, neurotoxic lesions of the MRN with local injections of N-methyl-D-aspartate or the activation of5-HT1Asomatodendritic auto-receptors of the MRN by microinjections of the5-HT1Areceptor agonist 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) before the training sessions also reduced the amount of freezing and the fear-potentiated startle. Freezing is a prominent response of contextual fear conditioning, but does not seem to be crucial for the enhancement of the startle reflex by explicit aversive cues. As fear-potentiated startle may be produced in posttraining lesioned rats that are unable to freeze to fear contextual stimuli, dissociable systems seem to be recruited in each condition. Thus, contextual fear and fear-potentiated startle are conveyed by distinct 5-HT-mediated circuits of the MRN.


2021 ◽  
Vol 15 ◽  
Author(s):  
Amanda S. Russo ◽  
Ryan G. Parsons

The study of fear conditioning has led to a better understanding of fear and anxiety-based disorders such as post-traumatic stress disorder (PTSD). Despite the fact many of these disorders are more common in women than in men, the vast majority of work investigating fear conditioning in rodents has been conducted in males. The goal of the work presented here was to better understand how biological sex affects contextual fear conditioning and expression. To this end, rats of both sexes were trained to fear a specific context and fear responses were measured upon re-exposure to the conditioning context. In the first experiment, male and female rats were given context fear conditioning and tested the next day during which freezing behavior was measured. In the second experiment, rats were trained and tested in a similar fashion while fear-potentiated startle and defecation were measured. We found that males showed more freezing behavior than females during a fear expression test. The expression of fear-potentiated startle did not differ between sexes, while males exhibited more defecation during a test in a novel context. These data suggest that the expression of defensive behavior differs between sexes and highlight the importance of using multiple measures of fear when comparing between sexes.


2012 ◽  
Vol 26 (7) ◽  
pp. 1256-1272 ◽  
Author(s):  
Evelyn Glotzbach ◽  
Heike Ewald ◽  
Marta Andreatta ◽  
Paul Pauli ◽  
Andreas Mühlberger

2020 ◽  
Vol 134 (5) ◽  
pp. 460-470
Author(s):  
Claudia C. Pinizzotto ◽  
Nicholas A. Heroux ◽  
Colin J. Horgan ◽  
Mark E. Stanton

Hippocampus ◽  
2013 ◽  
Vol 24 (2) ◽  
pp. 204-213 ◽  
Author(s):  
W. Bailey Glen ◽  
Bryant Horowitz ◽  
Gregory C. Carlson ◽  
Tyrone D. Cannon ◽  
Konrad Talbot ◽  
...  

Hippocampus ◽  
2013 ◽  
Vol 23 (7) ◽  
pp. 545-551 ◽  
Author(s):  
Cesar Augusto de Oliveira Coelho ◽  
Tatiana Lima Ferreira ◽  
Juliana Carlota Kramer Soares ◽  
Maria Gabriela Menezes Oliveira

Sign in / Sign up

Export Citation Format

Share Document