scholarly journals Causal Role of the Right Dorsolateral Prefrontal Cortex in Organizational Fairness Perception: Evidence From a Transcranial Direct Current Stimulation Study

2020 ◽  
Vol 14 ◽  
Author(s):  
Xi Li ◽  
Guanxing Xiong ◽  
Zhiqiang Dong ◽  
Shenggang Cai ◽  
Jun Zhao ◽  
...  
2021 ◽  
pp. 1-11
Author(s):  
Daniela Smirni ◽  
Massimiliano Oliveri ◽  
Eliana Misuraca ◽  
Angela Catania ◽  
Laura Vernuccio ◽  
...  

Background: Recent studies showed that in healthy controls and in aphasic patients, inhibitory trains of repetitive transcranial magnetic stimulation (rTMS) over the right prefrontal cortex can improve phonemic fluency performance, while anodal transcranial direct current stimulation (tDCS) over the left prefrontal cortex can improve performance in naming and semantic fluency tasks. Objective: This study aimed at investigating the effects of cathodal tDCS over the left or the right dorsolateral prefrontal cortex (DLPFC) on verbal fluency tasks (VFT) in patients with mild Alzheimer’s disease (AD). Methods: Forty mild AD patients participated in the study (mean age 73.17±5.61 years). All participants underwent cognitive baseline tasks and a VFT twice. Twenty patients randomly received cathodal tDCS to the left or the right DLPFC, and twenty patients were assigned to a control group in which only the two measures of VFT were taken, without the administration of the tDCS. Results: A significant improvement of performance on the VFT in AD patients was present after tDCS over the right DLPFC (p = 0.001). Instead, no difference was detected between the two VFTs sessions after tDCS over the left DLPFC (p = 0.42). Furthermore, these results cannot be related to task learning effects, since no significant difference was found between the two VFT sessions in the control group (p = 0.73). Conclusion: These data suggest that tDCS over DLPFC can improve VFT performance in AD patients. A hypothesis is that tDCS enhances adaptive patterns of brain activity between functionally connected areas.


2020 ◽  
Vol 31 (1) ◽  
pp. 184-200
Author(s):  
Stefan Schulreich ◽  
Lars Schwabe

Abstract Adaptive performance in uncertain environments depends on the ability to continuously update internal beliefs about environmental states. Recent correlative evidence suggests that a frontoparietal network including the dorsolateral prefrontal cortex (dlPFC) supports belief updating under uncertainty, but whether the dlPFC serves a “causal” role in this process is currently not clear. To elucidate its contribution, we leveraged transcranial direct current stimulation (tDCS) over the right dlPFC, while 91 participants performed an incentivized belief-updating task. Participants also underwent a psychosocial stress or control manipulation to investigate the role of stress, which is known to modulate dlPFC functioning. We observed enhanced monetary value updating after anodal tDCS when it was normatively expected from a Bayesian perspective. A model-based analysis indicates that this effect was driven by belief updating. However, we also observed enhanced non-normative value updating, which might have been driven instead by expectancy violation. Enhanced normative and non-normative value updating reflected increased vs. decreased Bayesian rationality, respectively. Furthermore, cortisol increases were associated with enhanced positive, but not with negative, value updating. The present study thereby sheds light on the causal role of the right dlPFC in the remarkable human ability to navigate uncertain environments by continuously updating prior knowledge following new evidence.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Min Wu ◽  
Yamei Yu ◽  
Lunjie Luo ◽  
Yuehao Wu ◽  
Jian Gao ◽  
...  

Conventional transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (DLPFC) could improve arousal in disorders of consciousness (DOC). However, the comparative effectiveness of anodal stimulation of the left DLPFC and the electrophysiological effect of tDCS are yet to be determined. In this randomized sham-controlled design, patients were separated into three groups (left/right anodal tDCS, sham). Data on the clinical assessments and EEG were collected at baseline and after 2 weeks of tDCS. The outcome at 3-month follow-up was evaluated using the Glasgow Outcome Scale-Extended. Results showed that sessions of the left tDCS facilitated the excitability of the prefrontal cortex, whereas only one patient had a positive outcome. Targeting the right DLPFC was less effective, merely leading to activation of the stimulation site, with no effect on the state of arousal. Moreover, sham stimulation had minimal or no effect on any of the outcomes. These results provide evidence for a hemispheric asymmetry of tDCS effects in patients with DOC. Left anodal tDCS might be more effective for modulating cortical excitability compared to tDCS on the right DLPFC. However, future studies with large sample sizes are needed to confirm these findings. This trial is registered with NCT03809936.


Sign in / Sign up

Export Citation Format

Share Document