scholarly journals The Time Course of Event-Related Brain Potentials in Athletes’ Mental Rotation With Different Spatial Transformations

2021 ◽  
Vol 15 ◽  
Author(s):  
Tian Feng ◽  
Yawei Li

Studies have found that athletes outperformed non-athletes in mental rotation tasks with both object-based and egocentric transformations (ET), but the effect of sport expertise on the processing stages (i.e., perceptual stage, rotation stage, and decision stage) remains conflicted. Bearing the view that the stages occur sequentially and the high temporal resolution of event-related brain potentials, this study focused on brain processing during mental rotation and was designed to determine the time course of electrophysiological changes in athletes and non-athletes. A total of 42 divers and non-athletes were recruited for the study. A mental body rotation task with object-based and egocentric transformation conditions was conducted, and the reaction time (RT), accuracy, performance stages, N2 latency, amplitude, and the amplitude of rotation-related negativity (RRN) were recorded. Behavioral results demonstrated higher accuracy for athletes at 120° and 180°. Moreover, as compared to non-athletes, the enlarged amplitude of N2 and RRN were confirmed in both transformations for athletes and were correlated with the performance stages and athletes’ professional training years. The present study provided a deeper insight into the relationship between sports training, behavior performance, and brain activity.

2017 ◽  
Vol 13 (3) ◽  
pp. 248-256 ◽  
Author(s):  
Tian Feng ◽  
Zhongqiu Zhang ◽  
Zhiguang Ji ◽  
Binbin Jia ◽  
Yawei Li

2019 ◽  
Author(s):  
Jaclyn L. Farrens ◽  
Aaron M. Simmons ◽  
Steven J. Luck ◽  
Emily S. Kappenman

Abstract Electroencephalography (EEG) is one of the most widely used techniques to measure human brain activity. EEG recordings provide a direct, high temporal resolution measure of cortical activity from noninvasive scalp electrodes. However, the signals are small relative to the noise, and optimizing the quality of the recorded EEG data can significantly improve the ability to identify signatures of brain processing. This protocol provides a step-by-step guide to recording the EEG from human research participants using strategies optimized for producing the best quality EEG.


2020 ◽  
Author(s):  
Jaclyn L. Farrens ◽  
Aaron M. Simmons ◽  
Steven J. Luck ◽  
Emily S. Kappenman

Abstract Electroencephalography (EEG) is one of the most widely used techniques to measure human brain activity. EEG recordings provide a direct, high temporal resolution measure of cortical activity from noninvasive scalp electrodes. However, the signals are small relative to the noise, and optimizing the quality of the recorded EEG data can significantly improve the ability to identify signatures of brain processing. This protocol provides a step-by-step guide to recording the EEG from human research participants using strategies optimized for producing the best quality EEG.


2018 ◽  
Vol 30 (7) ◽  
pp. 999-1010 ◽  
Author(s):  
Lina Teichmann ◽  
Tijl Grootswagers ◽  
Thomas Carlson ◽  
Anina N. Rich

Numerical format describes the way magnitude is conveyed, for example, as a digit (“3”) or Roman numeral (“III”). In the field of numerical cognition, there is an ongoing debate of whether magnitude representation is independent of numerical format. Here, we examine the time course of magnitude processing when using different symbolic formats. We presented participants with a series of digits and dice patterns corresponding to the magnitudes of 1 to 6 while performing a 1-back task on magnitude. Magnetoencephalography offers an opportunity to record brain activity with high temporal resolution. Multivariate pattern analysis applied to magnetoencephalographic data allows us to draw conclusions about brain activation patterns underlying information processing over time. The results show that we can cross-decode magnitude when training the classifier on magnitude presented in one symbolic format and testing the classifier on the other symbolic format. This suggests a similar representation of these numerical symbols. In addition, results from a time generalization analysis show that digits were accessed slightly earlier than dice, demonstrating temporal asynchronies in their shared representation of magnitude. Together, our methods allow a distinction between format-specific signals and format-independent representations of magnitude showing evidence that there is a shared representation of magnitude accessed via different symbols.


2007 ◽  
Vol 363 (1493) ◽  
pp. 1055-1069 ◽  
Author(s):  
Peter Hagoort

This paper focuses on what electrical and magnetic recordings of human brain activity reveal about spoken language understanding. Based on the high temporal resolution of these recordings, a fine-grained temporal profile of different aspects of spoken language comprehension can be obtained. Crucial aspects of speech comprehension are lexical access, selection and semantic integration. Results show that for words spoken in context, there is no ‘magic moment’ when lexical selection ends and semantic integration begins. Irrespective of whether words have early or late recognition points, semantic integration processing is initiated before words can be identified on the basis of the acoustic information alone. Moreover, for one particular event-related brain potential (ERP) component (the N400), equivalent impact of sentence- and discourse-semantic contexts is observed. This indicates that in comprehension, a spoken word is immediately evaluated relative to the widest interpretive domain available. In addition, this happens very quickly. Findings are discussed that show that often an unfolding word can be mapped onto discourse-level representations well before the end of the word. Overall, the time course of the ERP effects is compatible with the view that the different information types (lexical, syntactic, phonological, pragmatic) are processed in parallel and influence the interpretation process incrementally, that is as soon as the relevant pieces of information are available. This is referred to as the immediacy principle.


2021 ◽  
Author(s):  
Jaclyn L. Farrens ◽  
Aaron M. Simmons ◽  
Steven J. Luck ◽  
Emily S. Kappenman

Abstract Electroencephalography (EEG) is one of the most widely used techniques to measure human brain activity. EEG recordings provide a direct, high temporal resolution measure of cortical activity from noninvasive scalp electrodes. However, the signals are small relative to the noise, and optimizing the quality of the recorded EEG data can significantly improve the ability to identify signatures of brain processing. This protocol provides a step-by-step guide to recording the EEG from human research participants using strategies optimized for producing the best quality EEG.


2018 ◽  
Author(s):  
A. Lina Teichmann ◽  
Tijl Grootswagers ◽  
Thomas Carlson ◽  
Anina N. Rich

AbstractNumerical format describes the way magnitude is conveyed, for example as a digit (‘3’) or Roman Numeral (‘III’). In the field of numerical cognition, there is an ongoing debate of whether magnitude representation is independent of numerical format. Here, we examine the time course of magnitude processing when using different symbolic formats. We presented participants with a series of digits and dice patterns corresponding to the magnitudes of 1 to 6 while performing a 1-back task on magnitude. Magnetoencephalography (MEG) offers an opportunity to record brain activity with high temporal resolution. Multivariate Pattern Analysis (MVPA) applied to MEG data allows us to draw conclusions about brain activation patterns underlying information processing over time. The results show that we can crossdecode magnitude when training the classifier on magnitude presented in one symbolic format and testing the classifier on the other symbolic format. This suggests similar representation of these numerical symbols. Additionally, results from a time-generalisation analysis show that digits were accessed slightly earlier than dice, demonstrating temporal asynchronies in their shared representation of magnitude. Together, our methods allow a distinction between format-specific signals and format-independent representations of magnitude showing evidence that there is a shared representation of magnitude accessed via different symbols.


2009 ◽  
Vol 102 (5) ◽  
pp. 2657-2666 ◽  
Author(s):  
Hideki Mochizuki ◽  
Koji Inui ◽  
Hiroki C. Tanabe ◽  
Lisa F. Akiyama ◽  
Naofumi Otsuru ◽  
...  

Functional neuroimaging studies have identified itch-related brain regions. However, no study has investigated the temporal aspect of itch-related brain processing. Here this issue was investigated using electrically evoked itch in ten healthy adults. Itch stimuli were applied to the left wrist and brain activity was measured using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). In the MEG experiment, the magnetic responses evoked by the itch stimuli were observed in the contralateral and ipsilateral frontotemporal regions. The dipoles associated with the magnetic responses were mainly located in the contralateral (nine subjects) and ipsilateral (eight subjects) secondary somatosensory cortex (SII)/insula, which were also activated by the itch stimuli in the fMRI experiment. We also observed an itch-related magnetic response in the posterior part of the centroparietal region in six subjects. MEG and fMRI data showed that the magnetic response in this region was mainly associated with itch-related activation of the precuneus. The latency was significantly longer in the ipsilateral than that in the contralateral SII/insula, suggesting the difference to be associated with transmission in the callosal fibers. The timing of activation of the precuneus was between those of the contralateral and ipsilateral SII/insula. Other sources were located in the premotor, primary motor, and anterior cingulate cortices (one subject each). This study is the first to demonstrate part of the time course of itch-related brain processing. Combining methods with high temporal and spatial resolution (e.g., MEG and fMRI) would be useful to investigate the temporal aspect of the brain mechanism of itch.


2020 ◽  
Author(s):  
Jaclyn L. Farrens ◽  
Aaron M. Simmons ◽  
Steven J. Luck ◽  
Emily S. Kappenman

Abstract Electroencephalography (EEG) is one of the most widely used techniques to measure human brain activity. EEG recordings provide a direct, high temporal resolution measure of cortical activity from noninvasive scalp electrodes. However, the signals are small relative to the noise, and optimizing the quality of the recorded EEG data can significantly improve the ability to identify signatures of brain processing. This protocol provides a step-by-step guide to recording the EEG from human research participants using strategies optimized for producing the best quality EEG.


2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


Sign in / Sign up

Export Citation Format

Share Document