scholarly journals Electroencephalogram (EEG) Recording Protocol for Cognitive and Affective Human Neuroscience Research

2021 ◽  
Author(s):  
Jaclyn L. Farrens ◽  
Aaron M. Simmons ◽  
Steven J. Luck ◽  
Emily S. Kappenman

Abstract Electroencephalography (EEG) is one of the most widely used techniques to measure human brain activity. EEG recordings provide a direct, high temporal resolution measure of cortical activity from noninvasive scalp electrodes. However, the signals are small relative to the noise, and optimizing the quality of the recorded EEG data can significantly improve the ability to identify signatures of brain processing. This protocol provides a step-by-step guide to recording the EEG from human research participants using strategies optimized for producing the best quality EEG.

2019 ◽  
Author(s):  
Jaclyn L. Farrens ◽  
Aaron M. Simmons ◽  
Steven J. Luck ◽  
Emily S. Kappenman

Abstract Electroencephalography (EEG) is one of the most widely used techniques to measure human brain activity. EEG recordings provide a direct, high temporal resolution measure of cortical activity from noninvasive scalp electrodes. However, the signals are small relative to the noise, and optimizing the quality of the recorded EEG data can significantly improve the ability to identify signatures of brain processing. This protocol provides a step-by-step guide to recording the EEG from human research participants using strategies optimized for producing the best quality EEG.


2020 ◽  
Author(s):  
Jaclyn L. Farrens ◽  
Aaron M. Simmons ◽  
Steven J. Luck ◽  
Emily S. Kappenman

Abstract Electroencephalography (EEG) is one of the most widely used techniques to measure human brain activity. EEG recordings provide a direct, high temporal resolution measure of cortical activity from noninvasive scalp electrodes. However, the signals are small relative to the noise, and optimizing the quality of the recorded EEG data can significantly improve the ability to identify signatures of brain processing. This protocol provides a step-by-step guide to recording the EEG from human research participants using strategies optimized for producing the best quality EEG.


2020 ◽  
Author(s):  
Jaclyn L. Farrens ◽  
Aaron M. Simmons ◽  
Steven J. Luck ◽  
Emily S. Kappenman

Abstract Electroencephalography (EEG) is one of the most widely used techniques to measure human brain activity. EEG recordings provide a direct, high temporal resolution measure of cortical activity from noninvasive scalp electrodes. However, the signals are small relative to the noise, and optimizing the quality of the recorded EEG data can significantly improve the ability to identify signatures of brain processing. This protocol provides a step-by-step guide to recording the EEG from human research participants using strategies optimized for producing the best quality EEG.


2020 ◽  
Author(s):  
Aaron M. Simmons ◽  
Steven J. Luck

Abstract Electroencephalogram (EEG) recordings provide a valuable, noninvasive method for measuring human brain activity. This protocol modifies our general protocol for EEG recording (Farrens et al., 2019) for use during the COVID-19 pandemic. It was created with the help of numerous experts, and it specifies a clear set of steps for interacting with research participants, using personal protective equipment (PPE), and disinfecting equipment, all with the goal of reducing the COVID-19 risks for both laboratory personnel and participants. It focuses on the use of EEG in relatively simple research studies of adults who can easily understand and follow instructions, yet can be readily adapted for studies using other types of EEG experiments or other participant populations.


2020 ◽  
Author(s):  
Aaron M. Simmons ◽  
Steven J. Luck

Abstract Electroencephalogram (EEG) recordings provide a valuable, noninvasive method for measuring human brain activity. This protocol modifies our general protocol for EEG recording (Farrens et al., 2019) for use during the COVID-19 pandemic. It was created with the help of numerous experts, and it specifies a clear set of steps for interacting with research participants, using personal protective equipment (PPE), and disinfecting equipment, all with the goal of reducing the COVID-19 risks for both laboratory personnel and participants. It focuses on the use of EEG in relatively simple research studies of adults who can easily understand and follow instructions, yet can be readily adapted for studies using other types of EEG experiments or other participant populations.


2019 ◽  
Author(s):  
Johannes Vosskuhl ◽  
Tuomas P. Mutanen ◽  
Toralf Neuling ◽  
Risto J. Ilmoniemi ◽  
Christoph S. Herrmann

1.AbstractBackgroundTo probe the functional role of brain oscillations, transcranial alternating current stimulation (tACS) has proven to be a useful neuroscientific tool. Because of the huge tACS-caused artifact in electroencephalography (EEG) signals, tACS–EEG studies have been mostly limited to compare brain activity between recordings before and after concurrent tACS. Critically, attempts to suppress the artifact in the data cannot assure that the entire artifact is removed while brain activity is preserved. The current study aims to evaluate the feasibility of specific artifact correction techniques to clean tACS-contaminated EEG data.New MethodIn the first experiment, we used a phantom head to have full control over the signal to be analyzed. Driving pre-recorded human brain-oscillation signals through a dipolar current source within the phantom, we simultaneously applied tACS and compared the performance of different artifact-correction techniques: sine subtraction, template subtraction, and signal-space projection (SSP). In the second experiment, we combined tACS and EEG on a human subject to validate the best-performing data-correction approach.ResultsThe tACS artifact was highly attenuated by SSP in the phantom and the human EEG; thus, we were able to recover the amplitude and phase of the oscillatory activity. In the human experiment, event-related desynchronization could be restored after correcting the artifact.Comparison with existing methodsThe best results were achieved with SSP, which outperformed sine subtraction and template subtraction.ConclusionsOur results demonstrate the feasibility of SSP by applying it to human tACS–EEG data.


Author(s):  
Sravanth Kumar Ramakuri ◽  
Chinmay Chakraboirty ◽  
Anudeep Peddi ◽  
Bharat Gupta

In recent years, a vast research is concentrated towards the development of electroencephalography (EEG)-based human-computer interface in order to enhance the quality of life for medical as well as nonmedical applications. The EEG is an important measurement of brain activity and has great potential in helping in the diagnosis and treatment of mental and brain neuro-degenerative diseases and abnormalities. In this chapter, the authors discuss the classification of EEG signals as a key issue in biomedical research for identification and evaluation of the brain activity. Identification of various types of EEG signals is a complicated problem, requiring the analysis of large sets of EEG data. Representative features from a large dataset play an important role in classifying EEG signals in the field of biomedical signal processing. So, to reduce the above problem, this research uses three methods to classify through feature extraction and classification schemes.


Author(s):  
Javier Escudero ◽  
Roberto Hornero ◽  
Daniel Abásolo ◽  
Jesús Poza ◽  
Alberto Fernández

The analysis of the electromagnetic brain activity can provide important information to help in the diagnosis of several mental diseases. Both electroencephalogram (EEG) and magnetoencephalogram (MEG) record the neural activity with high temporal resolution (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). Nevertheless, MEG offers some advantages over EEG. For example, in contrast to EEG, MEG does not depend on any reference point. Moreover, the magnetic fields are less distorted than the electric ones by the skull and the scalp (Hämäläinen et al., 1993). Despite these advantages, the use of MEG data involves some problems. One of the most important difficulties is that MEG recordings may be severely contaminated by additive external noise due to the intrinsic weakness of the brain magnetic fields. Hence, MEG must be recorded in magnetically shielded rooms with low-noise SQUID (Superconducting QUantum Interference Devices) gradiometers (Hämäläinen et al., 1993).


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhenhu Liang ◽  
Yinghua Wang ◽  
Yongshao Ren ◽  
Duan Li ◽  
Logan Voss ◽  
...  

Burst suppression is a unique electroencephalogram (EEG) pattern commonly seen in cases of severely reduced brain activity such as overdose of general anesthesia. It is important to detect burst suppression reliably during the administration of anesthetic or sedative agents, especially for cerebral-protective treatments in various neurosurgical diseases. This study investigates recurrent plot (RP) analysis for the detection of the burst suppression pattern (BSP) in EEG. The RP analysis is applied to EEG data containing BSPs collected from 14 patients. Firstly we obtain the best selection of parameters for RP analysis. Then, the recurrence rate (RR), determinism (DET), and entropy (ENTR) are calculated. Then RR was selected as the best BSP index one-way analysis of variance (ANOVA) and multiple comparison tests. Finally, the performance of RR analysis is compared with spectral analysis, bispectral analysis, approximate entropy, and the nonlinear energy operator (NLEO). ANOVA and multiple comparison tests showed that the RR could detect BSP and that it was superior to other measures with the highest sensitivity of suppression detection (96.49%, P=0.03). Tracking BSP patterns is essential for clinical monitoring in critically ill and anesthetized patients. The purposed RR may provide an effective burst suppression detector for developing new patient monitoring systems.


Author(s):  
Duong Nhu ◽  
Mubeen Janmohamed ◽  
Lubna Shakhatreh ◽  
Ofer Gonen ◽  
Patrick Kwan ◽  
...  

Epilepsy is the most common neurological disorder. The diagnosis commonly requires manual visual electroencephalogram (EEG) analysis which is time-consuming. Deep learning has shown promising performance in detecting interictal epileptiform discharges (IED) and may improve the quality of epilepsy monitoring. However, most of the datasets in the literature are small (n≤100) and collected from single clinical centre, limiting the generalization across different devices and settings. To better automate IED detection, we cross-evaluated a Resnet architecture on 2 sets of routine EEG recordings from patients with idiopathic generalized epilepsy collected at the Alfred Health Hospital and Royal Melbourne Hospital (RMH). We split these EEG recordings into 2s windows with or without IED and evaluated different model variants in terms of how well they classified these windows. The results from our experiment showed that the architecture generalized well across different datasets with an AUC score of 0.894 (95% CI, 0.881–0.907) when trained on Alfred’s dataset and tested on RMH’s dataset, and 0.857 (95% CI, 0.847–0.867) vice versa. In addition, we compared our best model variant with Persyst and observed that the model was comparable.


Sign in / Sign up

Export Citation Format

Share Document