scholarly journals Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics

Author(s):  
Panteleimon Chriskos ◽  
Christos A. Frantzidis ◽  
Polyxeni T. Gkivogkli ◽  
Panagiotis D. Bamidis ◽  
Chrysoula Kourtidou-Papadeli
2020 ◽  
Vol 20 (S12) ◽  
Author(s):  
Juan C. Mier ◽  
Yejin Kim ◽  
Xiaoqian Jiang ◽  
Guo-Qiang Zhang ◽  
Samden Lhatoo

Abstract Background Sudden Unexpected Death in Epilepsy (SUDEP) has increased in awareness considerably over the last two decades and is acknowledged as a serious problem in epilepsy. However, the scientific community remains unclear on the reason or possible bio markers that can discern potentially fatal seizures from other non-fatal seizures. The duration of postictal generalized EEG suppression (PGES) is a promising candidate to aid in identifying SUDEP risk. The length of time a patient experiences PGES after a seizure may be used to infer the risk a patient may have of SUDEP later in life. However, the problem becomes identifying the duration, or marking the end, of PGES (Tomson et al. in Lancet Neurol 7(11):1021–1031, 2008; Nashef in Epilepsia 38:6–8, 1997). Methods This work addresses the problem of marking the end to PGES in EEG data, extracted from patients during a clinically supervised seizure. This work proposes a sensitivity analysis on EEG window size/delay, feature extraction and classifiers along with associated hyperparameters. The resulting sensitivity analysis includes the Gradient Boosted Decision Trees and Random Forest classifiers trained on 10 extracted features rooted in fundamental EEG behavior using an EEG specific feature extraction process (pyEEG) and 5 different window sizes or delays (Bao et al. in Comput Intell Neurosci 2011:1687–5265, 2011). Results The machine learning architecture described above scored a maximum AUC score of 76.02% with the Random Forest classifier trained on all extracted features. The highest performing features included SVD Entropy, Petrosan Fractal Dimension and Power Spectral Intensity. Conclusion The methods described are effective in automatically marking the end to PGES. Future work should include integration of these methods into the clinical setting and using the results to be able to predict a patient’s SUDEP risk.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Bingtao Zhang ◽  
Tao Lei ◽  
Hong Liu ◽  
Hanshu Cai

Sleep staging is considered as an effective indicator for auxiliary diagnosis of sleep diseases and related psychiatric diseases, so it attracts a lot of attention from sleep researchers. Nevertheless, sleep staging based on visual inspection of tradition is subjective, time-consuming, and error-prone due to the large bulk of data which have to be processed. Therefore, automatic sleep staging is essential in order to solve these problems. In this article, an electroencephalogram- (EEG-) based scheme that is able to automatically classify sleep stages is proposed. Firstly, EEG data are preprocessed to remove artifacts, extract features, and normalization. Secondly, the normalized features and other context information are stored using an ontology-based model (OBM). Thirdly, an improved method of self-adaptive correlation analysis is designed to select the most effective EEG features. Based on these EEG features and weighting features analysis, the improved random forest (RF) is considered as the classifier to achieve the classification of sleep stages. To investigate the classification ability of the proposed method, several sets of experiments are designed and conducted to classify the sleep stages into two, three, four, and five states. The accuracy of five-state classification is 89.37%, which is improved compared to the accuracy using unimproved RF (84.37%) or previously reported classifiers. In addition, a set of controlled experiments is executed to verify the effect of the number of sleep segments (epochs) on the classification, and the results demonstrate that the proposed scheme is less affected by the sleep segments.


2020 ◽  
Author(s):  
Foroogh Shamsi ◽  
Ali Haddad ◽  
Laleh Najafizadeh

AbstractObjectiveClassification of electroencephalography (EEG) signals with high accuracy using short recording intervals has been a challenging problem in developing brain computer interfaces (BCIs). This paper presents a novel feature extraction method for EEG recordings to tackle this problem.ApproachThe proposed approach is based on the concept that the brain functions in a dynamic manner, and utilizes dynamic functional connectivity graphs. The EEG data is first segmented into intervals during which functional networks sustain their connectivity. Functional connectivity networks for each identified segment are then localized, and graphs are constructed, which will be used as features. To take advantage of the dynamic nature of the generated graphs, a Long Short Term Memory (LSTM) classifier is employed for classification.Main resultsFeatures extracted from various durations of post-stimulus EEG data associated with motor execution and imagery tasks are used to test the performance of the classifier. Results show an average accuracy of 85.32% about only 500 ms after stimulus presentation.SignificanceOur results demonstrate, for the first time, that using the proposed feature extraction method, it is possible to classify motor tasks from EEG recordings using a short interval of the data in the order of hundreds of milliseconds (e.g. 500 ms).This duration is considerably shorter than what has been reported before. These results will have significant implications for improving the effectiveness and the speed of BCIs, particularly for those used in assistive technologies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dongwei Chen ◽  
Rui Miao ◽  
Zhaoyong Deng ◽  
Na Han ◽  
Chunjian Deng

In recent years, affective computing based on electroencephalogram (EEG) data has attracted increased attention. As a classic EEG feature extraction model, Granger causality analysis has been widely used in emotion classification models, which construct a brain network by calculating the causal relationships between EEG sensors and select the key EEG features. Traditional EEG Granger causality analysis uses the L2 norm to extract features from the data, and so the results are susceptible to EEG artifacts. Recently, several researchers have proposed Granger causality analysis models based on the least absolute shrinkage and selection operator (LASSO) and the L1/2 norm to solve this problem. However, the conventional sparse Granger causality analysis model assumes that the connections between each sensor have the same prior probability. This paper shows that if the correlation between the EEG data from each sensor can be added to the Granger causality network as prior knowledge, the EEG feature selection ability and emotional classification ability of the sparse Granger causality model can be enhanced. Based on this idea, we propose a new emotional computing model, named the sparse Granger causality analysis model based on sensor correlation (SC-SGA). SC-SGA integrates the correlation between sensors as prior knowledge into the Granger causality analysis based on the L1/2 norm framework for feature extraction, and uses L2 norm logistic regression as the emotional classification algorithm. We report the results of experiments using two real EEG emotion datasets. These results demonstrate that the emotion classification accuracy of the SC-SGA model is better than that of existing models by 2.46–21.81%.


2019 ◽  
Vol 15 (3) ◽  
pp. 14-27
Author(s):  
Wang Tao ◽  
Wu Linyan ◽  
Li Yanping ◽  
Gao Nuo ◽  
Zhang Weiran

Feature extraction is an important step in electroencephalogram (EEG) processing of motor imagery, and the feature extraction of EEG directly affects the final classification results. Through the analysis of various feature extraction methods, this article finally selects Common Spatial Patterns (CSP) and wavelet packet analysis (WPA) to extract the feature and uses Support Vector Machine (SVM) to classify and compare these extracted features. For the EEG data provided by GRAZ University, the accuracy rate of feature extraction using CSP algorithm is 85.5%, and the accuracy rate of feature extraction using wavelet packet analysis is 92%. Then this paper analyzes the EEG data collected by Emotiv epoc+ system. The classification accuracy of wavelet packet extracted features can still be maintained at more than 80%, while the classification accuracy of CSP extracted feature is decreased obviously. Experimental results show that the method of wavelet packet analysis towards competition data and Emotiv epoc+ system data can both get a desirable outcome.


Sign in / Sign up

Export Citation Format

Share Document