eeg features
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 155)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Yuting Wang ◽  
Shujian Wang ◽  
Ming Xu

This paper puts forward a new method of landscape recognition and evaluation by using aerial video and EEG technology. In this study, seven typical landscape types (forest, wetland, grassland, desert, water, farmland, and city) were selected. Different electroencephalogram (EEG) signals were generated through different inner experiences and feelings felt by people watching video stimuli of the different landscape types. The electroencephalogram (EEG) features were extracted to obtain the mean amplitude spectrum (MAS), power spectrum density (PSD), differential entropy (DE), differential asymmetry (DASM), rational asymmetry (RASM), and differential caudality (DCAU) in the five frequency bands of delta, theta, alpha, beta, and gamma. According to electroencephalogram (EEG) features, four classifiers including the back propagation (BP) neural network, k-nearest neighbor classification (KNN), random forest (RF), and support vector machine (SVM) were used to classify the landscape types. The results showed that the support vector machine (SVM) classifier and the random forest (RF) classifier had the highest accuracy of landscape recognition, which reached 98.24% and 96.72%, respectively. Among the six classification features selected, the classification accuracy of MAS, PSD, and DE with frequency domain features were higher than those of the spatial domain features of DASM, RASM and DCAU. In different wave bands, the average classification accuracy of all subjects was 98.24% in the gamma band, 94.62% in the beta band, and 97.29% in the total band. This study identifies and classifies landscape perception based on multi-channel EEG signals, which provides a new idea and method for the quantification of human perception.


2021 ◽  
Vol 12 (1) ◽  
pp. 389
Author(s):  
Ernee Sazlinayati Othman ◽  
Ibrahima Faye ◽  
Aarij Mahmood Hussaan

The usage of physiological measures in detecting student’s interest is often said to improve the weakness of psychological measures by decreasing the susceptibility of subjective bias. The existing methods, especially EEG-based, use classification, which needs a predefined class and complex computational to analyze. However, the predefined classes are mostly based on subjective measurement (e.g., questionnaires). This work proposed a new scheme to automatically cluster the students by the level of situational interest (SI) during learning-based lessons on their electroencephalography (EEG) features. The formed clusters are then used as ground truth for classification purposes. A simultaneous recording of EEG was performed on 30 students while attending a lecture in a real classroom. The frontal mean delta and alpha power as well as the frontal alpha asymmetry metric served as the input for k-means and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithms. Using the collected data, 29 models were trained within nine domain classifiers, then the classifiers with the highest performance were selected. We validated all the models through 10-fold cross-validation. The high SI group was clustered to students having lower frontal mean delta and alpha power together with negative Frontal Alpha Asymmetry (FAA). It was found that k-means performed better by giving the maximum performance assessment parameters of 100% in clustering the students into three groups: high SI, medium SI and low SI. The findings show that the DBSCAN had reduced the performance to cluster dataset without the outlier. The findings of this study give a promising option to cluster the students by their SI level, as well as address the drawbacks of the existing methods, which use subjective measures.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 499
Author(s):  
Chien-Te Wu ◽  
Hao-Chuan Huang ◽  
Shiuan Huang ◽  
I-Ming Chen ◽  
Shih-Cheng Liao ◽  
...  

Major depressive disorder (MDD) is a global healthcare issue and one of the leading causes of disability. Machine learning combined with non-invasive electroencephalography (EEG) has recently been shown to have the potential to diagnose MDD. However, most of these studies analyzed small samples of participants recruited from a single source, raising serious concerns about the generalizability of these results in clinical practice. Thus, it has become critical to re-evaluate the efficacy of various common EEG features for MDD detection across large and diverse datasets. To address this issue, we collected resting-state EEG data from 400 participants across four medical centers and tested classification performance of four common EEG features: band power (BP), coherence, Higuchi’s fractal dimension, and Katz’s fractal dimension. Then, a sequential backward selection (SBS) method was used to determine the optimal subset. To overcome the large data variability due to an increased data size and multi-site EEG recordings, we introduced the conformal kernel (CK) transformation to further improve the MDD as compared with the healthy control (HC) classification performance of support vector machine (SVM). The results show that (1) coherence features account for 98% of the optimal feature subset; (2) the CK-SVM outperforms other classifiers such as K-nearest neighbors (K-NN), linear discriminant analysis (LDA), and SVM; (3) the combination of the optimal feature subset and CK-SVM achieves a high five-fold cross-validation accuracy of 91.07% on the training set (140 MDD and 140 HC) and 84.16% on the independent test set (60 MDD and 60 HC). The current results suggest that the coherence-based connectivity is a more reliable feature for achieving high and generalizable MDD detection performance in real-life clinical practice.


2021 ◽  
Vol 15 ◽  
Author(s):  
Pengwei Zhang ◽  
Chongdan Min ◽  
Kangjia Zhang ◽  
Wen Xue ◽  
Jingxia Chen

Inspired by the neuroscience research results that the human brain can produce dynamic responses to different emotions, a new electroencephalogram (EEG)-based human emotion classification model was proposed, named R2G-ST-BiLSTM, which uses a hierarchical neural network model to learn more discriminative spatiotemporal EEG features from local to global brain regions. First, the bidirectional long- and short-term memory (BiLSTM) network is used to obtain the internal spatial relationship of EEG signals on different channels within and between regions of the brain. Considering the different effects of various cerebral regions on emotions, the regional attention mechanism is introduced in the R2G-ST-BiLSTM model to determine the weight of different brain regions, which could enhance or weaken the contribution of each brain area to emotion recognition. Then a hierarchical BiLSTM network is again used to learn the spatiotemporal EEG features from regional to global brain areas, which are then input into an emotion classifier. Especially, we introduce a domain discriminator to work together with the classifier to reduce the domain offset between the training and testing data. Finally, we make experiments on the EEG data of the DEAP and SEED datasets to test and compare the performance of the models. It is proven that our method achieves higher accuracy than those of the state-of-the-art methods. Our method provides a good way to develop affective brain–computer interface applications.


2021 ◽  
Author(s):  
Zeyu Wang ◽  
Ziqun Zhou ◽  
Haibin Shen ◽  
Qi Xu ◽  
Kejie Huang

<div>Electroencephalography (EEG) emotion recognition, an important task in Human-Computer Interaction (HCI), has made a great breakthrough with the help of deep learning algorithms. Although the application of attention mechanism on conventional models has improved its performance, most previous research rarely focused on multiplex EEG features jointly, lacking a compact model with unified attention modules. This study proposes Joint-Dimension-Aware Transformer (JDAT), a robust model based on squeezed Multi-head Self-Attention (MSA) mechanism for EEG emotion recognition. The adaptive squeezed MSA applied on multidimensional features enables JDAT to focus on diverse EEG information, including space, frequency, and time. Under the joint attention, JDAT is sensitive to the complicated brain activities, such as signal activation, phase-intensity couplings, and resonance. Moreover, its gradually compressed structure contains no recurrent or parallel modules, greatly reducing the memory and complexity, and accelerating the inference process. The proposed JDAT is evaluated on DEAP, DREAMER, and SEED datasets, and experimental results show that it outperforms state-of-the-art methods along with stronger flexibility.</div>


2021 ◽  
Author(s):  
Zeyu Wang ◽  
Ziqun Zhou ◽  
Haibin Shen ◽  
Qi Xu ◽  
Kejie Huang

<div>Electroencephalography (EEG) emotion recognition, an important task in Human-Computer Interaction (HCI), has made a great breakthrough with the help of deep learning algorithms. Although the application of attention mechanism on conventional models has improved its performance, most previous research rarely focused on multiplex EEG features jointly, lacking a compact model with unified attention modules. This study proposes Joint-Dimension-Aware Transformer (JDAT), a robust model based on squeezed Multi-head Self-Attention (MSA) mechanism for EEG emotion recognition. The adaptive squeezed MSA applied on multidimensional features enables JDAT to focus on diverse EEG information, including space, frequency, and time. Under the joint attention, JDAT is sensitive to the complicated brain activities, such as signal activation, phase-intensity couplings, and resonance. Moreover, its gradually compressed structure contains no recurrent or parallel modules, greatly reducing the memory and complexity, and accelerating the inference process. The proposed JDAT is evaluated on DEAP, DREAMER, and SEED datasets, and experimental results show that it outperforms state-of-the-art methods along with stronger flexibility.</div>


2021 ◽  
Author(s):  
Kenneth J Pope ◽  
Trent W Lewis ◽  
Sean P Fitzgibbon ◽  
Azin S Janani ◽  
Tyler S Grummett ◽  
...  

Objective: In publications on the electroencephalographic (EEG) features of psychoses and other disorders, various methods are utilised to diminish electromyogram (EMG) contamination. The extent of residual EMG contamination using these methods has not been recognised. Here, we seek to emphasise the extent of residual EMG contamination of EEG. Methods: We compared scalp electrical recordings after applying different EMG-pruning methods with recordings of EMG-free data from 6 fully-paralysed healthy subjects. We calculated the ratio of the power of pruned, normal scalp electrical recordings in the 6 subjects, to the power of unpruned recordings in the same subjects when paralysed. We produced contamination graphs for different pruning methods. Results: EMG contamination exceeds EEG signals progressively more as frequencies exceed 25 Hz and with distance from the vertex. In contrast, Laplacian signals are spared in central scalp areas, even to 100 Hz. Conclusion: Given probable EMG contamination of EEG in psychiatric and other studies, few findings on beta- or gamma-frequency power can be relied upon. Based on the effectiveness of current methods of EEG de-contamination, investigators should be able to re-analyse recorded data, re-evaluate conclusions from high frequency EEG data and be aware of limitations of the methods.


2021 ◽  
Author(s):  
Valeria Jaramillo ◽  
Sarah Fiona Schoch ◽  
Andjela Markovic ◽  
Malcolm Kohler ◽  
Reto Huber ◽  
...  

Infancy represents a critical period during which thalamocortical brain connections develop and mature. Deviations in the maturation of thalamocortical connectivity are linked to neurodevelopmental disorders. There is a lack of early biomarkers to detect and localize neuromaturational deviations, which can be overcome with mapping through high-density electroencephalography (hdEEG) assessed in sleep. Specifically, slow waves and spindles in non-rapid eye movement (NREM) sleep are generated by the thalamocortical system, and their characteristics, slow wave slope and spindle density, are closely related to neuroplasticity and learning. Recent studies further suggest that information processing during sleep underlying sleep-dependent learning is promoted by the temporal coupling of slow waves and spindles, yet slow wave-spindle coupling remains unexplored in infancy. Thus, we evaluated three potential biomarkers: 1) slow wave slope, 2) spindle density, and 3) the temporal coupling of slow waves with spindles. We use hdEEG to first examine the occurrence and spatial distribution of these three EEG features in healthy infants and second to evaluate a predictive relationship with later behavioral outcomes. We report four key findings: First, infants' EEG features appear locally: slow wave slope is maximal in occipital and frontal areas, whereas spindle density is most pronounced frontocentrally. Second, slow waves and spindles are temporally coupled in infancy, with maximal coupling strength in the occipital areas of the brain. Third, slow wave slope, spindle density, and slow wave-spindle coupling are not associated with concurrent behavioral status (6 months). Fourth, spindle density in central and frontocentral regions at age 6 months predicts later behavioral outcomes at 12 and 24 months. Neither slow wave slope nor slow wave-spindle coupling predict behavioral development. Our results propose spindle density as an early EEG biomarker for identifying thalamocortical maturation, which can potentially be used for early diagnosis of neurodevelopmental disorders in infants. These findings are complemented by our companion paper that demonstrates the linkage of spindle density to infant nighttime movement, framing the possible role of spindles in sensorimotor microcircuitry development. Together, our studies suggest that early sleep habits, thalamocortical maturation, and behavioral outcome are closely interwoven. A crucial next step will be to evaluate whether early therapeutic interventions may be effective to reverse deviations in identified individuals at risk.


Sign in / Sign up

Export Citation Format

Share Document