scholarly journals Categorisation of EEG suppression using enhanced feature extraction for SUDEP risk assessment

2020 ◽  
Vol 20 (S12) ◽  
Author(s):  
Juan C. Mier ◽  
Yejin Kim ◽  
Xiaoqian Jiang ◽  
Guo-Qiang Zhang ◽  
Samden Lhatoo

Abstract Background Sudden Unexpected Death in Epilepsy (SUDEP) has increased in awareness considerably over the last two decades and is acknowledged as a serious problem in epilepsy. However, the scientific community remains unclear on the reason or possible bio markers that can discern potentially fatal seizures from other non-fatal seizures. The duration of postictal generalized EEG suppression (PGES) is a promising candidate to aid in identifying SUDEP risk. The length of time a patient experiences PGES after a seizure may be used to infer the risk a patient may have of SUDEP later in life. However, the problem becomes identifying the duration, or marking the end, of PGES (Tomson et al. in Lancet Neurol 7(11):1021–1031, 2008; Nashef in Epilepsia 38:6–8, 1997). Methods This work addresses the problem of marking the end to PGES in EEG data, extracted from patients during a clinically supervised seizure. This work proposes a sensitivity analysis on EEG window size/delay, feature extraction and classifiers along with associated hyperparameters. The resulting sensitivity analysis includes the Gradient Boosted Decision Trees and Random Forest classifiers trained on 10 extracted features rooted in fundamental EEG behavior using an EEG specific feature extraction process (pyEEG) and 5 different window sizes or delays (Bao et al. in Comput Intell Neurosci 2011:1687–5265, 2011). Results The machine learning architecture described above scored a maximum AUC score of 76.02% with the Random Forest classifier trained on all extracted features. The highest performing features included SVD Entropy, Petrosan Fractal Dimension and Power Spectral Intensity. Conclusion The methods described are effective in automatically marking the end to PGES. Future work should include integration of these methods into the clinical setting and using the results to be able to predict a patient’s SUDEP risk.

Author(s):  
Dmitriy Bespalov ◽  
Ali Shokoufandeh ◽  
William C. Regli ◽  
Wei Sun

In our recent work we have introduced a framework for extracting features from solid of mechanical artifacts in polyhedral representation based on scale-space feature decomposition [1]. Our approach used recent developments in efficient hierarchical decomposition of metric data using its spectral properties. In that work, through spectral decomposition, we were able to reduce the problem of matching to that of computing a mapping and distance measure between vertex-labeled rooted trees. This work discusses how Scale-Space decomposition frame-work could be extended to extract features from CAD models in polyhedral representation in terms of surface triangulation. First, we give an overview of the Scale-Space decomposition approach that is used to extract these features. Second, we discuss the performance of the technique used to extract features from CAD data in polyhedral representation. Third, we show the feature extraction process on noisy data — CAD models that were constructed using a 3D scanner. Finally, we conclude with discussion of future work.


2014 ◽  
Vol 24 (02) ◽  
pp. 1540005 ◽  
Author(s):  
Monira Islam ◽  
Tazrin Ahmed ◽  
Md. Salah Uddin Yusuf ◽  
Mohiuddin Ahmad

This paper presents a cognitive state estimation system focused on some effective feature extraction based on temporal and spectral analysis of electroencephalogram (EEG) signal and the proper channel selection of the BIOPAC automated EEG analysis system. In the proposed approach, different frequency components (i) real value; (ii) imaginary value; (iii) magnitude; (iv) phase angle and (v) power spectral density of the EEG data samples during different mental task performed to assess seven types of human cognitive states — relax, mental task, memory related task, motor action, pleasant, fear and enjoying music on the three channels of BIOPAC EEG data acquisition system — EEG, Alpha and Alpha RMS signal. Also the time and time-frequency-based features were extracted to compare the performance of the system. After feature extraction, the channel efficacy is evaluated by support vector machine (SVM) based on the classification rate in different cognitive states. From the experimental results and classification accuracy, it is determined that the overall accuracy for alpha channel shows much improved result for power spectral density than the other frequency based features and other channels. The classification rate is 69.17% for alpha channel whereas for EEG and alpha RMS channel it is found 47.22% and 32.21%, respectively. For statistical analysis standard deviation shows better result for alpha channel and it is found 65.4%. The time-frequency analysis shows much improved result for alpha channel also. For the mean value of DWT coefficients the accuracy is highest and it is 81.3%. Besides the classification accuracy, SVM shows better performance in compare with kNN classifier.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 145
Author(s):  
Hongquan Qu ◽  
Zhanli Fan ◽  
Shuqin Cao ◽  
Liping Pang ◽  
Hao Wang ◽  
...  

Electroencephalogram (EEG) signals contain a lot of human body performance information. With the development of the brain–computer interface (BCI) technology, many researchers have used the feature extraction and classification algorithms in various fields to study the feature extraction and classification of EEG signals. In this paper, the sensitive bands of EEG data under different mental workloads are studied. By selecting the characteristics of EEG signals, the bands with the highest sensitivity to mental loads are selected. In this paper, EEG signals are measured in different load flight experiments. First, the EEG signals are preprocessed by independent component analysis (ICA) to remove the interference of electrooculogram (EOG) signals, and then the power spectral density and energy are calculated for feature extraction. Finally, the feature importance is selected based on Gini impurity. The classification accuracy of the support vector machines (SVM) classifier is verified by comparing the characteristics of the full band with the characteristics of the β band. The results show that the characteristics of the β band are the most sensitive in EEG data under different mental workloads.


2018 ◽  
Author(s):  
I Wayan Agus Surya Darma

Balinese character recognition is a technique to recognize feature or pattern of Balinese character. Feature of Balinese character is generated through feature extraction process. This research using handwritten Balinese character. Feature extraction is a process to obtain the feature of character. In this research, feature extraction process generated semantic and direction feature of handwritten Balinese character. Recognition is using K-Nearest Neighbor algorithm to recognize 81 handwritten Balinese character. The feature of Balinese character images tester are compared with reference features. Result of the recognition system with K=3 and reference=10 is achieved a success rate of 97,53%.


2019 ◽  
Vol 13 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Abhisek Sethy ◽  
Prashanta Kumar Patra ◽  
Deepak Ranjan Nayak

Background: In the past decades, handwritten character recognition has received considerable attention from researchers across the globe because of its wide range of applications in daily life. From the literature, it has been observed that there is limited study on various handwritten Indian scripts and Odia is one of them. We revised some of the patents relating to handwritten character recognition. Methods: This paper deals with the development of an automatic recognition system for offline handwritten Odia character recognition. In this case, prior to feature extraction from images, preprocessing has been done on the character images. For feature extraction, first the gray level co-occurrence matrix (GLCM) is computed from all the sub-bands of two-dimensional discrete wavelet transform (2D DWT) and thereafter, feature descriptors such as energy, entropy, correlation, homogeneity, and contrast are calculated from GLCMs which are termed as the primary feature vector. In order to further reduce the feature space and generate more relevant features, principal component analysis (PCA) has been employed. Because of the several salient features of random forest (RF) and K- nearest neighbor (K-NN), they have become a significant choice in pattern classification tasks and therefore, both RF and K-NN are separately applied in this study for segregation of character images. Results: All the experiments were performed on a system having specification as windows 8, 64-bit operating system, and Intel (R) i7 – 4770 CPU @ 3.40 GHz. Simulations were conducted through Matlab2014a on a standard database named as NIT Rourkela Odia Database. Conclusion: The proposed system has been validated on a standard database. The simulation results based on 10-fold cross-validation scenario demonstrate that the proposed system earns better accuracy than the existing methods while requiring least number of features. The recognition rate using RF and K-NN classifier is found to be 94.6% and 96.4% respectively.


Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 79
Author(s):  
Carolyn J. Swinney ◽  
John C. Woods

Unmanned Aerial Vehicles (UAVs) undoubtedly pose many security challenges. We need only look to the December 2018 Gatwick Airport incident for an example of the disruption UAVs can cause. In total, 1000 flights were grounded for 36 h over the Christmas period which was estimated to cost over 50 million pounds. In this paper, we introduce a novel approach which considers UAV detection as an imagery classification problem. We consider signal representations Power Spectral Density (PSD); Spectrogram, Histogram and raw IQ constellation as graphical images presented to a deep Convolution Neural Network (CNN) ResNet50 for feature extraction. Pre-trained on ImageNet, transfer learning is utilised to mitigate the requirement for a large signal dataset. We evaluate performance through machine learning classifier Logistic Regression. Three popular UAVs are classified in different modes; switched on; hovering; flying; flying with video; and no UAV present, creating a total of 10 classes. Our results, validated with 5-fold cross validation and an independent dataset, show PSD representation to produce over 91% accuracy for 10 classifications. Our paper treats UAV detection as an imagery classification problem by presenting signal representations as images to a ResNet50, utilising the benefits of transfer learning and outperforming previous work in the field.


Author(s):  
Giuseppe Muscolino ◽  
Roberta Santoro ◽  
Alba Sofi

Interval sensitivity analysis of linear discretized structures with uncertain-but-bounded parameters subjected to stationary multi-correlated Gaussian stochastic processes is addressed. The proposed procedure relies on the use of the so-called Interval Rational Series Expansion (IRSE), recently proposed by the authors as an alternative explicit expression of the Neumann series expansion for the inverse of a matrix with a small rank-r modification and properly extended to handle also interval matrices. The IRSE allows to derive approximate explicit expressions of the interval sensitivities of the mean-value vector and Power Spectral Density (PSD) function matrix of the interval stationary stochastic response. The effectiveness of the proposed method is demonstrated through numerical results pertaining to a seismically excited three-storey frame structure with interval Young’s moduli of some columns.


Sign in / Sign up

Export Citation Format

Share Document