scholarly journals Transcranial Magnetic Stimulation Over the Right Posterior Superior Temporal Sulcus Promotes the Feature Discrimination Processing

2021 ◽  
Vol 15 ◽  
Author(s):  
Qihui Zhou ◽  
Penghui Song ◽  
Xueming Wang ◽  
Hua Lin ◽  
Yuping Wang

Attention is the dynamic process of allocating limited resources to the information that is most relevant to our goals. Accumulating studies have demonstrated the crucial role of frontal and parietal areas in attention. However, the effect of posterior superior temporal sulcus (pSTS) in attention is still unclear. To address this question, in this study, we measured transcranial magnetic stimulation (TMS)-induced event-related potentials (ERPs) to determine the extent of involvement of the right pSTS in attentional processing. We hypothesized that TMS would enhance the activation of the right pSTS during feature discrimination processing. We recruited 21 healthy subjects who performed the dual-feature delayed matching task while undergoing single-pulse sham or real TMS to the right pSTS 300 ms before the second stimulus onset. The results showed that the response time was reduced by real TMS of the pSTS as compared to sham stimulation. N270 amplitude was reduced during conflict processing, and the time-varying network analysis revealed increased connectivity between the frontal lobe and temporo-parietal and occipital regions. Thus, single-pulse TMS of the right pSTS enhances feature discrimination processing and task performance by reducing N270 amplitude and increasing connections between the frontal pole and temporo-parietal and occipital regions. These findings provide evidence that the right pSTS facilitates feature discrimination by accelerating the formation of a dynamic network.

2019 ◽  
Author(s):  
Daniel A Handwerker ◽  
Geena Ianni ◽  
Benjamin Gutierrez ◽  
Vinai Roopchansingh ◽  
Javier Gonzalez-Castillo ◽  
...  

AbstractHumans process faces using a network of face-selective regions distributed across the brain. Neuropsychological patient studies demonstrate that focal damage to nodes in this network can impair face recognition, but such patients are rare. We approximated the effects of damage to the face network in neurologically normal human participants using thetaburst transcranial magnetic stimulation (TBS). Multi-echo functional magnetic resonance imaging (fMRI) resting-state data were collected pre- and post-TBS delivery over the face-selective right superior temporal sulcus (rpSTS), or a control site in the right motor cortex. Results showed that TBS delivered over the rpSTS reduced resting-state connectivity across the extended face-processing network. This connectivity reduction was observed not only between the rpSTS and other face-selective areas, but also between non-stimulated face-selective areas across the ventral, medial and lateral brain surfaces (e.g. between the right amygdala and bilateral fusiform face areas and occipital face areas). TBS delivered over the motor cortex did not produce significant changes in resting-state connectivity across the face-processing network. These results demonstrate that, even without task-induced fMRI signal changes, disrupting a single node in a brain network can decrease the functional connectivity between nodes in that network that have not been directly stimulated.Author SummaryHuman behavior is dependent on brain networks that perform different cognitive functions. We combined thetaburst transcranial magnetic stimulation (TBS) with resting-state fMRI to study the face processing network. Disruption of the face-selective right posterior superior temporal sulcus (rpSTS) reduced fMRI connectivity across the face network. This impairment in connectivity was observed not only between the rpSTS and other face-selective areas, but also between non-stimulated face-selective areas on the ventral and medial brain surfaces (e.g. between the right amygdala and bilateral fusiform face areas and occipital face areas). Thus, combined TBS/fMRI can be used to approximate and measure the effects of focal brain damage on brain networks, and suggests such an approach may be useful for mapping intrinsic network organization.Technical TermsTBS vs TMSTranscranial magnetic stimulation (TMS) is a method that induces current in neural tissue by using a rapidly changing magnetic field. The pattern of magnetic field changes can vary. Thetaburst TMS (TBS) is a type of TMS where the same stimulation pattern fluctuates at around a 5Hz cycle.Multi-echo fMRIDuring typical fMRI, protons are excited and there is a delay, the echo time, before data are collected. That delay is typically designed to result in a high contrast for blood oxygenation differences. In multi-echo fMRI, data are collected at several echo times each time protons are excited. This results in data that have different levels of contrast for blood oxygenation differences. This added information can be used to empirically decrease noise.Face networkA group of brain regions that show significant activity changes in response to visual face stimuli. While these regions have been defined using univariate analyses with task-based fMRI, they often significantly correlate with each other at rest. In this manuscript, the following regions were a priori defined as part of the face network: posterior superior temporal sulcus (pSTS), amygdala, fusiform face area (FFA), and occipital face area (OFA).Matrix based analysis (MBA)A recent approach that uses a Bayesian multilevel modeling framework to identify pairs of ROIs where a decrease in correlation magnitude was larger than expected along with a measure of statistical evidence. With this approach, correlations between all pairs of ROIs are assessed as part of a single model rather than many independent statistical tests.


2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Yoshihiro Noda ◽  
Mera S. Barr ◽  
Reza Zomorrodi ◽  
Robin F. H. Cash ◽  
Pantelis Lioumis ◽  
...  

Background: The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) allows for non-invasive investigation of cortical response and connectivity in human cortex. This study aimed to examine the amplitudes and latencies of each TMS-evoked potential (TEP) component induced by single-pulse TMS (spTMS) to the left motor (M1) and dorsolateral prefrontal cortex (DLPFC) among healthy young participants (YNG), older participants (OLD), and patients with schizophrenia (SCZ). Methods: We compared the spatiotemporal characteristics of TEPs induced by spTMS among the groups. Results: Compared to YNG, M1-spTMS induced lower amplitudes of N45 and P180 in OLD and a lower amplitude of P180 in SCZ, whereas the DLPFC-spTMS induced a lower N45 in OLD. Further, OLD demonstrated latency delays in P60 after M1-spTMS and in N45-P60 over the right central region after left DLPFC-spTMS, whereas SCZ demonstrated latency delays in N45-P60 over the midline and right central regions after DLPFC-spTMS. Conclusions: These findings suggest that inhibitory and excitatory mechanisms mediating TEPs may be altered in OLD and SCZ. The amplitude and latency changes of TEPs with spTMS may reflect underlying neurophysiological changes in OLD and SCZ, respectively. The spTMS administered to M1 and the DLPFC can probe cortical functions by examining TEPs. Thus, TMS-EEG can be used to study changes in cortical connectivity and signal propagation from healthy to pathological brains.


2001 ◽  
Vol 248 (3) ◽  
pp. 184-192 ◽  
Author(s):  
Hongkui Jing ◽  
Morikuni Takigawa ◽  
Hisataku Okamura ◽  
Wataru Doi ◽  
Hiroshi Fukuzako

2008 ◽  
Vol 20 (3-4) ◽  
pp. 71-81 ◽  
Author(s):  
Stephanie L. Simon-Dack ◽  
P. Dennis Rodriguez ◽  
Wolfgang A. Teder-Sälejärvi

Imaging, transcranial magnetic stimulation, and psychophysiological recordings of the congenitally blind have confirmed functional activation of the visual cortex but have not extensively explained the functional significance of these activation patterns in detail. This review systematically examines research on the role of the visual cortex in processing spatial and non-visual information, highlighting research on individuals with early and late onset blindness. Here, we concentrate on the methods utilized in studying visual cortical activation in early blind participants, including positron emissions tomography (PET), functional magnetic resonance imaging (fMRI), transcranial magnetic stimulation (TMS), and electrophysiological data, specifically event-related potentials (ERPs). This paper summarizes and discusses findings of these studies. We hypothesize how mechanisms of cortical plasticity are expressed in congenitally in comparison to adventitiously blind and short-term visually deprived sighted participants and discuss potential approaches for further investigation of these mechanisms in future research.


2006 ◽  
Vol 96 (6) ◽  
pp. 3016-3027 ◽  
Author(s):  
Michael Vesia ◽  
Jachin A. Monteon ◽  
Lauren E. Sergio ◽  
J. D. Crawford

Dorsal posterior parietal cortex (PPC) has been implicated through single-unit recordings, neuroimaging data, and studies of brain-damaged humans in the spatial guidance of reaching and pointing movements. The present study examines the causal effect of single-pulse transcranial magnetic stimulation (TMS) over the left and right dorsal posterior parietal cortex during a memory-guided “reach-to-touch” movement task in six human subjects. Stimulation of the left parietal hemisphere significantly increased endpoint variability, independent of visual field, with no horizontal bias. In contrast, right parietal stimulation did not increase variability, but instead produced a significantly systematic leftward directional shift in pointing (contralateral to stimulation site) in both visual fields. Furthermore, the same lateralized pattern persisted with left-hand movement, suggesting that these aspects of parietal control of pointing movements are spatially fixed. To test whether the right parietal TMS shift occurs in visual or motor coordinates, we trained subjects to point correctly to optically reversed peripheral targets, viewed through a left–right Dove reversing prism. After prism adaptation, the horizontal pointing direction for a given visual target reversed, but the direction of shift during right parietal TMS did not reverse. Taken together, these data suggest that induction of a focal current reveals a hemispheric asymmetry in the early stages of the putative spatial processing in PPC. These results also suggest that a brief TMS pulse modifies the output of the right PPC in motor coordinates downstream from the adapted visuomotor reversal, rather than modifying the upstream visual coordinates of the memory representation.


2020 ◽  
Author(s):  
Louise Kyriaki ◽  
Gabrielle Todd ◽  
Matthias Schlesewsky ◽  
Joseph Devlin ◽  
Ina Bornkessel-Schlesewsky

Understanding the sequence (i.e. word order) of linguistic input plays an important role in sentence comprehension, particularly in languages such as English (Bornkessel-Schlesewsky et al., 2015). Neuroimaging and clinical research shows that left posterior superior temporal sulcus (pSTS) contributes towards sequence processing in both linguistic and non-linguistic contexts (Bornkessel et al., 2005; Wilson et al., 2010). To test the causal contribution of left pSTS for sequence-dependent sentence processing, we applied image-guided low-frequency repetitive transcranial magnetic stimulation (1 Hz for 15 minutes at 90% resting motor threshold) to this region in 23 healthy native English speakers. Participants undertook an auditory sentence processing task and were asked to identify the sentential actor or undergoer. Sentences were either semantically plausible or were rendered implausible by an animacy violation (e.g. “The student will write the answer” versus “The answer will write the student”). After sham-rTMS (control condition), participants predominantly selected the first noun as the actor and second noun as the undergoer, relying strongly on sequence cues (word order) for interpretation as expected in English speakers. By contrast, after real-rTMS, participants were more likely to use animacy as a cue to interpretation, with higher selections of the animate noun as the actor and inanimate noun as the undergoer regardless of word order. This effect also interacted with question focus and response time. These results indicate that sequence-based language processing is reduced after low-frequency rTMS to pSTS, suggesting a role for pSTS in processing sequential aspects of language such as word order.


Sign in / Sign up

Export Citation Format

Share Document