scholarly journals What makes the dorsomedial frontal cortex active during reading the mental states of others?

2013 ◽  
Vol 7 ◽  
Author(s):  
Masaki Isoda ◽  
Atsushi Noritake
Science ◽  
2019 ◽  
Vol 364 (6441) ◽  
pp. eaav8911 ◽  
Author(s):  
Morteza Sarafyazd ◽  
Mehrdad Jazayeri

Humans process information hierarchically. In the presence of hierarchies, sources of failures are ambiguous. Humans resolve this ambiguity by assessing their confidence after one or more attempts. To understand the neural basis of this reasoning strategy, we recorded from dorsomedial frontal cortex (DMFC) and anterior cingulate cortex (ACC) of monkeys in a task in which negative outcomes were caused either by misjudging the stimulus or by a covert switch between two stimulus-response contingency rules. We found that both areas harbored a representation of evidence supporting a rule switch. Additional perturbation experiments revealed that ACC functioned downstream of DMFC and was directly and specifically involved in inferring covert rule switches. These results‏ reveal the computational principles of hierarchical reasoning, as implemented by cortical circuits.


2016 ◽  
Author(s):  
Alejandro de la Vega ◽  
Tal Yarkoni ◽  
Tor D. Wager ◽  
Marie T. Banich

AbstractExtensive fMRI study of human lateral frontal cortex (LFC) has yet to yield a consensus mapping between discrete anatomy and psychological states, partly due to the difficulty of inferring mental states in individual studies. Here, we used a data-driven approach to generate a comprehensive functional-anatomical mapping of LFC from 11,406 neuroimaging studies. We identified putatively separable LFC regions on the basis of whole-brain co-activation, revealing 14 clusters organized into three whole-brain networks. Next, we used multivariate classification to identify the psychological states that best predicted activity in each sub-region, resulting in preferential psychological profiles. We observed large functional differences between networks, suggesting brain networks support distinct modes of processing. Within each network, however, we observed low functional specificity, suggesting discrete psychological states are not modularly organized. Our results are consistent with the view that individual LFC regions work as part of highly parallel, distributed networks to give rise to flexible, adaptive behavior.


Sign in / Sign up

Export Citation Format

Share Document