scholarly journals Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks

2021 ◽  
Vol 15 ◽  
Author(s):  
Biswadeep Chakraborty ◽  
Saibal Mukhopadhyay

A Spiking Neural Network (SNN) is trained with Spike Timing Dependent Plasticity (STDP), which is a neuro-inspired unsupervised learning method for various machine learning applications. This paper studies the generalizability properties of the STDP learning processes using the Hausdorff dimension of the trajectories of the learning algorithm. The paper analyzes the effects of STDP learning models and associated hyper-parameters on the generalizability properties of an SNN. The analysis is used to develop a Bayesian optimization approach to optimize the hyper-parameters for an STDP model for improving the generalizability properties of an SNN.

2021 ◽  
Vol 11 (5) ◽  
pp. 2059
Author(s):  
Sungmin Hwang ◽  
Hyungjin Kim ◽  
Byung-Gook Park

A hardware-based spiking neural network (SNN) has attracted many researcher’s attention due to its energy-efficiency. When implementing the hardware-based SNN, offline training is most commonly used by which trained weights by a software-based artificial neural network (ANN) are transferred to synaptic devices. However, it is time-consuming to map all the synaptic weights as the scale of the neural network increases. In this paper, we propose a method for quantized weight transfer using spike-timing-dependent plasticity (STDP) for hardware-based SNN. STDP is an online learning algorithm for SNN, but we utilize it as the weight transfer method. Firstly, we train SNN using the Modified National Institute of Standards and Technology (MNIST) dataset and perform weight quantization. Next, the quantized weights are mapped to the synaptic devices using STDP, by which all the synaptic weights connected to a neuron are transferred simultaneously, reducing the number of pulse steps. The performance of the proposed method is confirmed, and it is demonstrated that there is little reduction in the accuracy at more than a certain level of quantization, but the number of pulse steps for weight transfer substantially decreased. In addition, the effect of the device variation is verified.


2016 ◽  
Vol 28 (11) ◽  
pp. 2320-2351 ◽  
Author(s):  
Brian S. Robinson ◽  
Theodore W. Berger ◽  
Dong Song

Characterization of long-term activity-dependent plasticity from behaviorally driven spiking activity is important for understanding the underlying mechanisms of learning and memory. In this letter, we present a computational framework for quantifying spike-timing-dependent plasticity (STDP) during behavior by identifying a functional plasticity rule solely from spiking activity. First, we formulate a flexible point-process spiking neuron model structure with STDP, which includes functions that characterize the stationary and plastic properties of the neuron. The STDP model includes a novel function for prolonged plasticity induction, as well as a more typical function for synaptic weight change based on the relative timing of input-output spike pairs. Consideration for system stability is incorporated with weight-dependent synaptic modification. Next, we formalize an estimation technique using a generalized multilinear model (GMLM) structure with basis function expansion. The weight-dependent synaptic modification adds a nonlinearity to the model, which is addressed with an iterative unconstrained optimization approach. Finally, we demonstrate successful model estimation on simulated spiking data and show that all model functions can be estimated accurately with this method across a variety of simulation parameters, such as number of inputs, output firing rate, input firing type, and simulation time. Since this approach requires only naturally generated spikes, it can be readily applied to behaving animal studies to characterize the underlying mechanisms of learning and memory.


Sign in / Sign up

Export Citation Format

Share Document