scholarly journals Lemniscal Corticothalamic Feedback in Auditory Scene Analysis

2021 ◽  
Vol 15 ◽  
Author(s):  
Natsumi Y. Homma ◽  
Victoria M. Bajo

Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.

2021 ◽  
Author(s):  
Yuanqing Zhang ◽  
Xiaohui Wang ◽  
Lin Zhu ◽  
Siyi Bai ◽  
Rui Li ◽  
...  

Cortical feedback has long been considered crucial for modulation of sensory processing. In the mammalian auditory system, studies have suggested that corticofugal feedback can have excitatory, inhibitory, or both effects on the response of subcortical neurons, leading to controversies regarding the role of corticothalamic influence. This has been further complicated by studies conducted under different brain states. In the current study, we used cryo-inactivation in the primary auditory cortex (A1) to examine the role of corticothalamic feedback on medial geniculate body (MGB) neurons in awake marmosets. The primary effects of A1 inactivation were a frequency-specific decrease in the auditory response of MGB neurons coupled with an increased spontaneous firing rate, which together resulted in a decrease in the signal-to-noise ratio. In addition, we report for the first-time that A1 robustly modulated the long-lasting sustained response of MGB neurons which changed the frequency tuning after A1 inactivation, e.g., neurons with sharp tuning increased tuning bandwidth whereas those with broad tuning decreased tuning bandwidth. Taken together, our results demonstrate that corticothalamic modulation in awake marmosets serves to enhance sensory processing in a way similar to center-surround models proposed in visual and somatosensory systems, a finding which supports common principles of corticothalamic processing across sensory systems.


1999 ◽  
Vol 81 (5) ◽  
pp. 1999-2016 ◽  
Author(s):  
Edward L. Bartlett ◽  
Philip H. Smith

Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Presently little is known about what basic synaptic and cellular mechanisms are employed by thalamocortical neurons in the two main divisions of the auditory thalamus to elicit their distinct responses to sound. Using intracellular recording and labeling methods, we characterized anatomic features, membrane properties, and synaptic inputs of thalamocortical neurons in the dorsal (MGD) and ventral (MGV) divisions in brain slices of rat medial geniculate body. Quantitative analysis of dendritic morphology demonstrated that tufted neurons in both divisions had shorter dendrites, smaller dendritic tree areas, more profuse branching, and a greater dendritic polarization compared with stellate neurons, which were only found in MGD. Tufted neuron dendritic polarization was not as strong or consistent as earlier Golgi studies suggested. MGV and MGD cells had similar intrinsic properties except for an increased prevalence of a depolarizing sag potential in MGV neurons. The sag was the only intrinsic property correlated with cell morphology, seen only in tufted neurons in either division. Many MGV and MGD neurons received excitatory and inhibitory inferior colliculus (IC) inputs (designated IN/EX or EX/IN depending on excitation/inhibition sequence). However, a significant number only received excitatory inputs (EX/O) and a few only inhibitory (IN/O). Both MGV and MGD cells displayed similar proportions of response combinations, but suprathreshold EX/O responses only were observed in tufted neurons. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) had multiple distinguishable amplitude levels implying convergence. Excitatory inputs activated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors the relative contributions of which were variable. For IN/EX cells with suprathreshold inputs, first-spike timing was independent of membrane potential unlike that of EX/O cells. Stimulation of corticothalamic (CT) and thalamic reticular nucleus (TRN) axons evoked a GABAA IPSP, EPSP, GABAB IPSP sequence in most neurons with both morphologies in both divisions. TRN IPSPs and CT EPSPs were graded in amplitude, again suggesting convergence. CT inputs activated AMPA and NMDA receptors. The NMDA component of both IC and CT inputs had an unusual voltage dependence with a detectable dl-2-amino-5-phosphonovaleric acid-sensitive component even below −70 mV. First-spike latencies of CT evoked action potentials were sensitive to membrane potential regardless of whether the TRN IPSP was present. Overall, our in vitro data indicate that reported regional differences in the in vivo responses of MGV and MGD cells to auditory stimuli are not well correlated with major differences in intrinsic membrane features or synaptic responses between cell types.


2008 ◽  
Vol 99 (6) ◽  
pp. 2938-2945 ◽  
Author(s):  
Zhuo Zhang ◽  
Chun-Hua Liu ◽  
Yan-Qin Yu ◽  
Kenji Fujimoto ◽  
Ying-Shing Chan ◽  
...  

Electrical stimulation of the auditory cortex (AC) causes both facilitatory and inhibitory effects on the medial geniculate body (MGB). The purpose of this study was to identify the corticofugal inhibitory pathway to the MGB. We assessed two potential circuits: 1) the cortico-colliculo-thalamic circuit and 2) cortico-reticulo-thalamic one. We compared intracellular responses of MGB neurons to electrical stimulation of the AC following bilateral ablation of the inferior colliculi (IC) or thalamic reticular nucleus (TRN) in anesthetized guinea pigs. Cortical stimulation with intact TRN could cause strong inhibitory effects on the MGB neurons. The corticofugal inhibition remained effective after bilateral IC ablation, but it was minimized after the TRN was lesioned with kainic acid. Synchronized TRN neuronal activity and MGB inhibitory postsynaptic potentials (IPSPs) were observed with multiple recordings. The results suggest that corticofugal inhibition traverses the corticoreticulothalamic pathway, indicating that the colliculi-geniculate inhibitory pathway is probably only for feedforward inhibition.


2007 ◽  
Vol 58 ◽  
pp. S156
Author(s):  
Akihisa Kimura ◽  
Tomohiro Donishi ◽  
Hiroki Imbe ◽  
Yasuhiko Tamai

2008 ◽  
Vol 99 (3) ◽  
pp. 1137-1151 ◽  
Author(s):  
Nathalie Cotillon-Williams ◽  
Chloé Huetz ◽  
Elizabeth Hennevin ◽  
Jean-Marc Edeline

GABAergic cells of the thalamic reticular nucleus (TRN) can potentially exert strong control over transmission of information through thalamus to the cerebral cortex. Anatomical studies have shown that the reticulo-thalamic connections are spatially organized in the visual, somatosensory, and auditory systems. However, the issue of how inhibitory input from TRN controls the functional properties of thalamic relay cells and whether this control follows topographic rules remains largely unknown. Here we assessed the consequences of increasing or decreasing the activity of small ensembles of TRN neurons on the receptive field properties of medial geniculate (MG) neurons. For each MG cell, the frequency tuning curve and the rate-level function were tested before, during, and after microiontophoretic applications of GABA, or of glutamate, in the auditory sector of the TRN. For 66 MG cells tested during potent pharmacological control of TRN activity, group data did not reveal any significant effects. However, for a population of 20/66 cells (all but 1 recorded in the ventral, tonotopic, division), the breadth of tuning, the frequency selectivity and the acoustic threshold were significantly modified in the directions expected from removing, or reinforcing, a dominant inhibitory input onto MG cells. Such effects occurred only when the distance between the characteristic frequency of the recorded ventral MG cell and that of the TRN cells at the ejection site was <0.25 octaves; they never occurred for larger distances. This relationship indicates that the functional interactions between TRN cells and ventral MG cells rely on precise topographic connections.


2012 ◽  
Vol 107 (9) ◽  
pp. 2366-2382 ◽  
Author(s):  
Yonatan I. Fishman ◽  
Christophe Micheyl ◽  
Mitchell Steinschneider

The ability to detect and track relevant acoustic signals embedded in a background of other sounds is crucial for hearing in complex acoustic environments. This ability is exemplified by a perceptual phenomenon known as “rhythmic masking release” (RMR). To demonstrate RMR, a sequence of tones forming a target rhythm is intermingled with physically identical “Distracter” sounds that perceptually mask the rhythm. The rhythm can be “released from masking” by adding “Flanker” tones in adjacent frequency channels that are synchronous with the Distracters. RMR represents a special case of auditory stream segregation, whereby the target rhythm is perceptually segregated from the background of Distracters when they are accompanied by the synchronous Flankers. The neural basis of RMR is unknown. Previous studies suggest the involvement of primary auditory cortex (A1) in the perceptual organization of sound patterns. Here, we recorded neural responses to RMR sequences in A1 of awake monkeys in order to identify neural correlates and potential mechanisms of RMR. We also tested whether two current models of stream segregation, when applied to these responses, could account for the perceptual organization of RMR sequences. Results suggest a key role for suppression of Distracter-evoked responses by the simultaneous Flankers in the perceptual restoration of the target rhythm in RMR. Furthermore, predictions of stream segregation models paralleled the psychoacoustics of RMR in humans. These findings reinforce the view that preattentive or “primitive” aspects of auditory scene analysis may be explained by relatively basic neural mechanisms at the cortical level.


Sign in / Sign up

Export Citation Format

Share Document