scholarly journals Auditory Sensory Gating in Children With Cochlear Implants: A P50-N100-P200 Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Yan-Xin Chen ◽  
Xin-Ran Xu ◽  
Shuo Huang ◽  
Rui-Rui Guan ◽  
Xiao-Yan Hou ◽  
...  

Background: While a cochlear implant (CI) can restore access to audibility in deaf children, implanted children may still have difficulty in concentrating. Previous studies have revealed a close relationship between sensory gating and attention. However, whether CI children have deficient auditory sensory gating remains unclear.Methods: To address this issue, we measured the event-related potentials (ERPs), including P50, N100, and P200, evoked by paired tone bursts (S1 and S2) in CI children and normal-hearing (NH) controls. Suppressed amplitudes for S2 compared with S1 in these three ERPs reflected sensory gating during early and later phases, respectively. A Swanson, Nolan, and Pelham IV (SNAP-IV) scale was performed to assess the attentional performance.Results: Significant amplitude differences between S1 and S2 in N100 and P200 were observed in both NH and CI children, indicating the presence of sensory gating in the two groups. However, the P50 suppression was only found in NH children and not in CI children. Furthermore, the duration of deafness was significantly positively correlated with the score of inattention in CI children.Conclusion: Auditory sensory gating can develop but is deficient during the early phase in CI children. Long-term auditory deprivation has a negative effect on sensory gating and attentional performance.

Author(s):  
Sharon E. Miller ◽  
Jessica Graham ◽  
Erin Schafer

Purpose Auditory sensory gating is a neural measure of inhibition and is typically measured with a click or tonal stimulus. This electrophysiological study examined if stimulus characteristics and the use of speech stimuli affected auditory sensory gating indices. Method Auditory event-related potentials were elicited using natural speech, synthetic speech, and nonspeech stimuli in a traditional auditory gating paradigm in 15 adult listeners with normal hearing. Cortical responses were recorded at 64 electrode sites, and peak amplitudes and latencies to the different stimuli were extracted. Individual data were analyzed using repeated-measures analysis of variance. Results Significant gating of P1–N1–P2 peaks was observed for all stimulus types. N1–P2 cortical responses were affected by stimulus type, with significantly less neural inhibition of the P2 response observed for natural speech compared to nonspeech and synthetic speech. Conclusions Auditory sensory gating responses can be measured using speech and nonspeech stimuli in listeners with normal hearing. The results of the study indicate the amount of gating and neural inhibition observed is affected by the spectrotemporal characteristics of the stimuli used to evoke the neural responses.


2020 ◽  
Vol 34 (3) ◽  
pp. 171-178
Author(s):  
Samantha Major ◽  
Kimberly Carpenter ◽  
Logan Beyer ◽  
Hannah Kwak ◽  
Geraldine Dawson ◽  
...  

Abstract. Auditory sensory gating is commonly assessed using the Paired-Click Paradigm (PCP), an electroencephalography (EEG) task in which two identical sounds are presented sequentially and the brain’s inhibitory response to the second sound is measured. Many clinical populations demonstrate reduced P50 and/or N100 suppression. Testing sensory gating in children may help to identify individuals at risk for neurodevelopmental disorders earlier, including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which could lead to more optimal outcomes. Minimal research has been done with children because of the difficulty of performing lengthy EEG experiments with young children, requiring them to sit still for long periods of time. We designed a modified, potentially child-friendly version of the PCP and evaluated it in typically developing adults. The PCP was administered twice, once in a traditional silent room (silent movie condition) and once with an audible movie playing (audible movie condition) to minimize boredom and enhance behavioral compliance. We tested whether P50 and N100 suppression were influenced by the presence of the auditory background noise from the movie. N100 suppression was observed in both hemispheres in the silent movie condition and in the left hemisphere only during the audible movie condition, though suppression was attenuated in the audible movie condition. P50 suppression was not observed in either condition. N100 sensory gating was successfully elicited with an audible movie playing during the PCP, supporting the use of the modified task for future research in both children and adults.


1993 ◽  
Vol 2 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Marc H. Branchey ◽  
Laure Buydens-Branchey ◽  
Thomas B. Horvath

2019 ◽  
Vol 36 (5) ◽  
pp. 702-712 ◽  
Author(s):  
Melissa A. Papesh ◽  
Jonathan E. Elliott ◽  
Megan L. Callahan ◽  
Daniel Storzbach ◽  
Miranda M. Lim ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zengyou Xin ◽  
Simeng Gu ◽  
Wei Wang ◽  
Yi Lei ◽  
Hong Li

Sensory gating is a neurophysiological measure of inhibition that is characterized by a reduction in the P50, N100, and P200 event-related potentials to a repeated identical stimulus. It was proposed that abnormal sensory gating is involved in the neural pathological basis of some severe mental disorders. Since then, the prevailing application of sensory gating measures has been in the study of neuropathology associated with schizophrenia and so on. However, sensory gating is not only trait-like but can be also state-like, and measures of sensory gating seemed to be affected by several factors in healthy subjects. The objective of this work was to clarify the roles of acute stress and gender in sensory gating. Data showed acute stress impaired inhibition of P50 to the second click in the paired-click paradigm without effects on sensory registration leading to worse P50 sensory gating and disrupted attention allocation reflected by attenuated P200 responses than control condition, without gender effects. As for N100 and P200 gating, women showed slightly better than men without effects of acute stress. Data also showed slightly larger N100 amplitudes across clicks and significant larger P200 amplitude to the first click for women, suggesting that women might be more alert than men.


1993 ◽  
Vol 2 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Marc H. Branchey ◽  
Laure Buydens-Branchey ◽  
Thomas B. Horvath

Sign in / Sign up

Export Citation Format

Share Document