scholarly journals Rodent Area Prostriata Converges Multimodal Hierarchical Inputs and Projects to the Structures Important for Visuomotor Behaviors

2021 ◽  
Vol 15 ◽  
Author(s):  
Chang-Hui Chen ◽  
Jin-Meng Hu ◽  
Shun-Yu Zhang ◽  
Xiao-Jun Xiang ◽  
Sheng-Qiang Chen ◽  
...  

Area prostriata is a limbic structure critical to fast processing of moving stimuli in far peripheral visual field. Neural substrates underlying this function remain to be discovered. Using both retrograde and anterograde tracing methods, the present study reveals that the prostriata in rat and mouse receives inputs from multimodal hierarchical cortical areas such as primary, secondary, and association visual and auditory cortices and subcortical regions such as the anterior and midline thalamic nuclei and claustrum. Surprisingly, the prostriata also receives strong afferents directly from the rostral part of the dorsal lateral geniculate nucleus. This shortcut pathway probably serves as one of the shortest circuits for fast processing of the peripheral vision and unconscious blindsight since it bypasses the primary visual cortex. The outputs of the prostriata mainly target the presubiculum (including postsubiculum), pulvinar, ventral lateral geniculate nucleus, lateral dorsal thalamic nucleus, and zona incerta as well as the pontine and pretectal nuclei, most of which are heavily involved in subcortical visuomotor functions. Taken together, these results suggest that the prostriata is poised to quickly receive and analyze peripheral visual and other related information and timely initiates and modulates adaptive visuomotor behaviors, particularly in response to unexpected quickly looming threats.

1999 ◽  
Vol 16 (6) ◽  
pp. 1037-1054 ◽  
Author(s):  
L.P. MORIN ◽  
J.H. BLANCHARD

The hamster intergeniculate leaflet (IGL), part of the circadian rhythm regulatory system, has very extensive interconnections with subcortical visual nuclei. The present investigation describes IGL connections with the hamster diencephalon and telencephalon and compares them with ventral lateral geniculate nucleus (VLG) connections and retinal projections. Connections of the geniculate nuclei were evaluated using anterograde transport of iontophoretically injected Phaseolus vulgaris leucoagglutinin and by retrograde transport of cholera toxin β fragment. The cholera fragment was also injected intraocularly to trace retinal efferents. The IGL has ipsilateral and contralateral projections to the anterior and posterior hypothalamic nuclei, the ventral preoptic, lateral and dorsal hypothalamic areas, but not to the core ventromedial nucleus and very sparsely to the paraventricular nucleus. There are also IGL projections to the medial and lateral zona incerta, anteroventral, anterodorsal, reuniens, parataenial, paraventricular, centrolateral, central medial, and laterodorsal thalamic nuclei. IGL projections to the telencephalon are found in the horizontal limb of the diagonal band, olfactory tubercle, nucleus of the lateral olfactory tract, posterior bed nucleus of the stria terminalis, ventral pallidum, and in nuclei of the medial amygdala. The only substantial VLG projections are to bed nucleus of the stria terminalis, IGL, medial zona incerta, central medial and laterodorsal thalamic nuclei. Several of the IGL targets, the bed nucleus of the stria terminalis and zona incerta in particular, send projections back to the IGL and VLG. In addition, cells are present in the caudal cingulate cortex that project to both nuclei. Retinal projections are found in many of the regions receiving IGL innervation, including nuclei of the medial basal telencephalon, the posteromedial bed nucleus of the stria terminalis, and nuclei of the hypothalamus. A retinal projection is also visible in the lateral olfactory tract from which it extends rostrally, then medially along the base of the rhinal fissure. Fibers also extend caudally, in a superficial location, to perirhinal cortex. The results further demonstrate the widespread connections of the IGL and support the idea that the IGL modulates olfactory, photic, and circadian rhythm regulation of regulatory physiology and behavior.


2020 ◽  
Vol 124 (2) ◽  
pp. 404-417 ◽  
Author(s):  
Peter W. Campbell ◽  
Gubbi Govindaiah ◽  
Sean P. Masterson ◽  
Martha E. Bickford ◽  
William Guido

The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.


2000 ◽  
Vol 17 (2) ◽  
pp. 187-196 ◽  
Author(s):  
JOKUBAS ZIBURKUS ◽  
MARTHA E. BICKFORD ◽  
WILLIAM GUIDO

In normal adult cats, a monoclonal antibody directed toward the NR-1 subunit of the N-methyl-d-aspartate (NMDA) receptor (Pharmingen, clone 54.1) produced dense cellular and neuropil labeling throughout all layers of the lateral geniculate nucleus (LGN) and adjacent thalamic nuclei, including the thalamic reticular, perigeniculate, medial intralaminar, and ventral lateral geniculate nuclei. Cellular staining revealed well-defined somata, and in some cases proximal dendrites. NMDAR-1 cell labeling was also evident in the LGN of early postnatal kittens, suggesting that developing LGN cells possess this receptor subunit at or before eye opening. Within the A-layers of the adult LGN, staining encompassed a wide range of soma sizes. Soma size comparisons of NMDAR-1 stained cells with those stained with an antibody directed toward a nonphosphorylated neurofilament protein (SMI-32), which selectively stains Y-relay cells (Bickford et al., 1998), or an antibody to glutamic acid decarboxylase (GAD), which stains for GABAergic interneurons, suggested that NMDA receptors are utilized by relay cells and interneurons. NMDAR-1 staining was also observed in the LGN of cats with early monocular lid suture. Although labeling was apparent in both deprived and nondeprived A-layers of LGN, the distribution of soma sizes was significantly different. In the deprived A-layers of LGN, staining was limited to small- and medium-sized cells. Cells with relatively large soma were lacking. However, cell density measurements as well as soma size comparisons with cells stained for Nissl substance suggested these differences were due to deprivation-induced cell shrinkage and not to a loss of NMDAR-1 staining in Y-cells. Taken together, these results suggest that NMDA receptors are utilized by both relay cells and interneurons in LGN and that alterations in early visual experience do not necessarily affect the expression of NMDA receptors in the LGN.


Sign in / Sign up

Export Citation Format

Share Document