scholarly journals The Mitochondrial Permeability Transition Pore and Cancer: Molecular Mechanisms Involved in Cell Death

2014 ◽  
Vol 4 ◽  
Author(s):  
Massimo Bonora ◽  
Paolo Pinton
2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Judith Bernal-Ramírez ◽  
Adriana Riojas-Hernández ◽  
Flor E Morales-Marroquín ◽  
Elvía M Domínguez-Barragán ◽  
David Rodríguez-Mier ◽  
...  

Several mechanisms have been implicated in heart failure (HF) development due to obesity, including altered Ca2+ homeostasis and mitochondrial increased reactive oxygen species (ROS). Besides their metabolic role, mitochondria are important cell death regulators, since their disruption induces apoptosis. The mitochondrial permeability transition pore (MPTP) formation is key in this process. Ca2+ and ROS are known inducers of MPTP, and mitochondria are the main ROS generators. However, it has not been demonstrated that MPTP formation is involved in cardiac cell death due to obesity. Therefore, the aim of this work was to determine whether Ca2+ alterations and/or MPTP opening underlie cardiac dysfunction. We used obese Zucker fa/fa rats (32 weeks old), displaying concentric hypertrophy and cardiac dysfunction. We measured: i) Systolic and diastolic Ca2+ signaling in isolated myocytes, in basal conditions and upon β-adrenergic stimulation (β-AS), and ii) in vitro mitochondrial function: respiration, ROS production and MPTP opening. We found that the main alteration in Ca2+ signaling in fa/fa myocytes was a decrease in SERCA Ca2+ removal capacity, since Ca2+ transient amplitude and spark frequency were unchanged. Furthermore, in fa/fa myocytes, β-AS response was preserved. On the other hand, fa/fa mitochondria respiration, in state 3 decreased, but was unchanged in state 4, when glutamate/malate were used as substrate, resulting in an small decrease in respiratory control. In addition, fa/fa mitochondria were more sensitive to MPTP opening, induced by Ca2+ and carboxyatractiloside (CAT). Moreover, fa/fa mitochondria showed increased H2O2 production, and in exposed thiol groups in the adenine nucleotide translocase, a regulatory MPTP component. Since Ca2+ signaling is relatively normal in fa/fa cells, it does not seem to be the main contributor to the cardiac contractile dysfunction. However, given that fa/fa mitochondria showed decrease respiratory performance, were more susceptible to MPTP opening, and showed enhanced H2O2 production. We conclude that fa/fa mitochondria were more vulnerable to enhanced oxidative stress, causing MPTP opening, which could be exacerbated by SERCA slower Ca2+ removal capacity, leading to myocyte apoptosis.


FEBS Letters ◽  
2001 ◽  
Vol 510 (3) ◽  
pp. 136-140 ◽  
Author(s):  
Elzira E. Saviani ◽  
Cintia H. Orsi ◽  
Jusceley F.P. Oliveira ◽  
Cecı́lia A.F. Pinto-Maglio ◽  
Ione Salgado

2016 ◽  
Vol 473 (9) ◽  
pp. 1129-1140 ◽  
Author(s):  
Andrew P. Richardson ◽  
Andrew P. Halestrap

The molecular identity of the mitochondrial permeability transition pore (MPTP), a key player in cell death, remains controversial. Here we use a novel MPTP inhibitor to demonstrate that formation of the pore involves native mitochondrial membrane proteins adopting novel conformations.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Alexandra M Machikas ◽  
James C Hunter ◽  
Veronica Lopez ◽  
Donna H Korzick

Background: Cardiovascular disease remains the leading cause of death in older post-menopausal women. Ischemia/Reperfusion (I/R) injury triggers mitochondrial calcium (Ca 2+ ) overload inducing mitochondrial permeability transition pore (MPTP) opening, mitochondrial dysfunction, and cell death potentially by necrosis, apoptosis, and/or autophagy. Purpose: We sought to determine if age-associated estrogen deficiency increases mitochondrial Ca 2+ sensitivity, providing a possible mechanism for increased vulnerability to I/R injury in older women. Methods: Mitochondrial respiration (MR) was assessed in isolated mitochondria from ventricles of adult (6 mo; n=15) and aged (24 mo; n=18) ovary-intact or ovariectomized (OVX) female F344 rats. MR at complexes I and II was compared in the absence (State 2) and presence (State 3) of ADP to calculate respiratory control index (RCI; state3/state 2). Reduced RCI following Ca 2+ addition was used to assess Ca 2+ sensitivity, while mitochondrial Ca 2+ retention capacity was measured to quantify MPTP opening (CRC; n=4-5/group) prior to and following coronary artery ligation (55 min I and 6 hr R). Apoptosis was examined using DNA laddering and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Markers of autophagy were evaluated by western blotting and mitochondrial morphology through electron microscopy (EM). Results: Significant age-dependent decreases in RCI for complex I (12%) and complex II (8%) were observed in the absence of Ca 2+ , and correlated with increased necrosis in aged hearts revealed by triphenyltetrazolium chloride (TTC) staining (p < 0.05). Ca 2+ exposure decreased MR (18-30%; p < 0.05) in Complex I of aged and OVX mitochondria vs adults. Furthermore, CRC worsened with age requiring less Ca 2+ to open the MPTP. Reduced DNA laddering and TUNEL staining combined with increased beclin-1 and cathepsinD expression in aged vs. adult further support a dominant role for necrosis over apoptosis underlying cell death in aged females (n=4-5/group). EM revealed morphological alterations with age and OVX. Conclusion: Decreased MR and increased MPTP opening with aging are likely causal in necrotic cell death mechanisms associated with I/R injury observed in post-menopausal women.


Sign in / Sign up

Export Citation Format

Share Document