scholarly journals Prediction of Rivaroxaban-Rifampin Interaction After Major Orthopedic Surgery: Physiologically Based Pharmacokinetic Modeling and Simulation

2021 ◽  
Vol 12 ◽  
Author(s):  
Rui-juan Xu ◽  
Tao Ling ◽  
Hong Tang ◽  
Wei-hong Ge ◽  
Qing Jiang

Rivaroxaban is commonly used for the prophylaxis of venous thromboembolism (VTE) for patients undergoing major orthopedic surgery. Rivaroxaban is primarily eliminated by hepatic CYP450 metabolism and renal excretion. Rifampin is a commonly used antibiotic for prosthetic joint infections (PJI) and a potent inducer of CYP450 enzymes. Clinical data about drug-drug interactions of rivaroxaban and rifampin are limited. The present study is to describe DDI of rivaroxaban and rifampin in several prosthetic joint infections patients undergoing major orthopedic surgery. We retrospectively identified six patients concomitantly administered with rivaroxaban and rifampin between 2019 and 2020. Plasma samples of these patients with accurate sampling time were chosen from the biobank and plasma levels of rivaroxaban were measured at each time point. A physiologically based pharmacokinetic model for the rivaroxaban-rifampin interaction was developed to predict the optimal dosing regimen of rivaroxaban in the case of co-medication with rifampin. The model was validated by the observed plasma concentration of rivaroxaban from the above patients. From this model, it could be simulated that when rifampin starts or stops, gradually changing rivaroxaban dose during the first few days would elevate the efficacy and safety of rivaroxaban.

2021 ◽  
Vol 9 (7) ◽  
pp. 1500
Author(s):  
Llanos Salar-Vidal ◽  
Yvonne Achermann ◽  
John-Jairo Aguilera-Correa ◽  
Anja Poehlein ◽  
Jaime Esteban ◽  
...  

Cutibacterium acnes is a common cause of prosthetic joint infections (PJIs). The C. acnes population can be divided into six main phylotypes (IA1, IA2, IB, IC, II and III) that are associated with different clinical conditions and normal skin. A single-locus sequence typing (SLST) scheme can distinguish ten main SLST types: A-E (all IA1), F (IA2), G (IC), H (IB), K (II), L (III). We genome-sequenced and compared 16 strains of C. acnes isolated from healthy skin (n = 4) and PJIs (n = 12), including six PJI cases with a good outcome (four shoulder PJIs, one hip PJI, one knee PJI) and six with infection relapse (three shoulder PJIs, three hip PJIs). The sequenced strains belonged to four different phylotypes (IA1, IA2, IB and II) and seven different SLST types. All five type IB strains (all SLST type H1) were PJI isolates (three hip PJIs, two shoulder PJIs), and four of these caused infection relapse (three hip PJIs, one shoulder PJI). Isolates from PJI cases with a good outcome belonged to three different phylotypes (IA, IB, II). Interestingly, four strains (three strains from PJI cases with good outcome and one strain from healthy skin) contained a linear plasmid; these strains belonged to different SLST types (A1, C1, F4, H1) and were isolated in three different hospitals. This study suggests that type IB strains have the potential to cause infection relapse, in particular regarding hip PJIs. Moreover, our study revealed that strains belonging to the same SLST type can differ in their accessory genome in different geographic locations, indicative of microevolution.


Sign in / Sign up

Export Citation Format

Share Document