scholarly journals Electronic Currents and Magnetic Fields in H2+ Induced by Coherent Resonant Bichromatic Circularly Polarized Laser Pulses: Effects of Orientation, Phase, and Helicity

2021 ◽  
Vol 9 ◽  
Author(s):  
André D. Bandrauk ◽  
Szczepan Chelkowski ◽  
Kai-Jun Yuan

We theoretically study pulse phase and helicity effects on ultrafast magnetic field generation in intense bichromatic circularly polarized laser fields. Simulations are performed on the aligned molecular ion H2+ from numerical solutions of corresponding time-dependent Schrödinger equations. We demonstrate how electron coherent resonant excitation influences the phase and helicity of the optically induced magnetic field generation. The dependence of the generated magnetic field on the pulse phase arises from the interference effect between multiple excitation and ionization pathways, and is shown to be sensitive to molecular alignment and laser polarization. Molecular resonant excitation induces coherent ring electron currents, giving enhancement or suppression of the phase dependence. Pulse helicity effects control laser-induced electron dynamics in bichromatic circular polarization excitation. These phenomena are demonstrated by a molecular attosecond photoionization model and coherent electron current theory. The results offer a guiding principle for generating ultrafast magnetic fields and for studying coherent electron dynamics in complex molecular systems.

Author(s):  
Zhe Zhang ◽  
Baojun Zhu ◽  
Yutong Li ◽  
Weiman Jiang ◽  
Dawei Yuan ◽  
...  

As a promising new way to generate a controllable strong magnetic field, laser-driven magnetic coils have attracted interest in many research fields. In 2013, a kilotesla level magnetic field was achieved at the Gekko XII laser facility with a capacitor–coil target. A similar approach has been adopted in a number of laboratories, with a variety of targets of different shapes. The peak strength of the magnetic field varies from a few tesla to kilotesla, with different spatio-temporal ranges. The differences are determined by the target geometry and the parameters of the incident laser. Here we present a review of the results of recent experimental studies of laser-driven magnetic field generation, as well as a discussion of the diagnostic techniques required for such rapidly changing magnetic fields. As an extension of the magnetic field generation, some applications are discussed.


1993 ◽  
Vol 157 ◽  
pp. 429-430
Author(s):  
A. Lazarian

Magnetic field generation in molecular (atomic) clouds at the early stages of galactic evolution is considered. It is shown that if there is no internal motions immersed the cloud, battery mechanisms (Lazarian 1992a) can account for the generation of thin magnetic shells around clouds insides in plasma with temperature gradients. If turbulent motions are present, the dynamo can be essential. The operation of α — ω, α2 and turbulent dynamos within molecular clouds is discussed. It is shown that the turbulent dynamo leads to generation of magnetic fields in the trace behind the cloud. These magnetic fields within the molecular clouds and in their vicinity are important for the solution of the galactic seed field problem (see Lazarian 1992b) and the formation of structures in clumpy molecular complexes.


1981 ◽  
Vol 26 (1) ◽  
pp. 123-146 ◽  
Author(s):  
M. Kono ◽  
M. M. Škorić ◽  
D. Ter Haar

We discuss various aspects of the spontaneous generation of magnetic fields in a Langmuir plasma. We first of all show that the correct general expression for the ponderomotive force leads to the solenoidal current responsible for the magnetic-field generation. We derive the ponderomotive-force expression and also the magnetic-field generation equations from a two-time-scale two-fluid description. We also use a kinetic approach to derive the magnetic-field generation equations. We discuss the stability of monochromatic Langmuir waves and show that they are subject to both the ordinary modulational instability and to a magneto-modulational instability. We show that the coupled nonlinear equations describing the electric field strength amplitude, the plasma density, and the self-generated magnetic field can, under certain conditions, be reduced to a generalized cubic nonlinear Schrodinger equation. We finally show, by using a virial theorem, that the self-generated magnetic field does not stabilize the wave collapse.


Sign in / Sign up

Export Citation Format

Share Document