pulse phase
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 53)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 923 (1) ◽  
pp. 63
Author(s):  
K. Makishima ◽  
T. Tamba ◽  
Y. Aizawa ◽  
H. Odaka ◽  
H. Yoneda ◽  
...  

Abstract X-ray timing properties of the magnetar SGR 1900+14 were studied, using the data taken with Suzaku in 2009 and NuSTAR in 2016, for a time lapse of 114 and 242 ks, respectively. On both occasions, the object exhibited the characteristic two-component spectrum. The soft component, dominant in energies below ∼5 keV, showed a regular pulsation, with a period of P = 5.21006 s as determined with the Suzaku XIS, and P = 5.22669 with NuSTAR. However, in ≳ 6 keV where the hard component dominates, the pulsation became detectable with the Suzaku HXD and NuSTAR only after the data were corrected for periodic pulse-phase modulation, with a period of T = 40 − 44 ks and an amplitude of ≈1 s. Further correcting the two data sets for complex energy dependences in the phase modulation parameters, the hard X-ray pulsation became fully detectable, in 12–50 keV with the HXD and 6–60 keV with NuSTAR, using a common value of T = 40.5 ± 0.8 ks. Thus, SGR 1900+14 becomes a third example, after 4U 0142+61 and 1E 1547−5408, to show the hard X-ray pulse-phase modulation, and a second case of energy dependences in the modulation parameters. The neutron star in this system is inferred to perform free precession, as it is axially deformed by ≈ P/T = 1.3 × 10−4, presumably due to ∼ 1016 G toroidal magnetic fields. As a counterexample, the Suzaku data of the binary pulsar 4U 1626−67 were analyzed, but no similar effect was found. These results altogether argue against the accretion scenario for magnetars.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 240
Author(s):  
Yusong Wang ◽  
Yidi Wang ◽  
Wei Zheng ◽  
Minzhang Song ◽  
Guanghua Li

X-ray pulsar-based navigation (XNAV) is a promising autonomous navigation method, and the pulse phase is the basic measurement of XNAV. However, the current methods for estimating the pulse phase for orbiting spacecraft have a high computational cost. This paper proposes a stellar angle measurement-aided pulse phase estimation method for high Earth orbit (HEO) spacecraft, with the aim of reducing the computational cost of pulse phase estimation in XNAV. In this pulse phase estimation method, the effect caused by the orbital motion of the spacecraft is roughly removed by stellar angle measurement. Furthermore, a deeply integrated navigation method using the X-ray pulsar and the stellar angle is proposed. The performances of the stellar angle measurement-aided pulse phase estimation method and the integrated navigation method were verified by simulation. The simulation results show that the proposed pulse phase estimation method can handle the signals of millisecond pulsars and achieve pulse phase estimation with lower computational cost than the current methods. In addition, for HEO spacecraft, the position error of the proposed integrated navigation method is lower than that of the stellar angle navigation method.


2021 ◽  
Vol 9 ◽  
Author(s):  
André D. Bandrauk ◽  
Szczepan Chelkowski ◽  
Kai-Jun Yuan

We theoretically study pulse phase and helicity effects on ultrafast magnetic field generation in intense bichromatic circularly polarized laser fields. Simulations are performed on the aligned molecular ion H2+ from numerical solutions of corresponding time-dependent Schrödinger equations. We demonstrate how electron coherent resonant excitation influences the phase and helicity of the optically induced magnetic field generation. The dependence of the generated magnetic field on the pulse phase arises from the interference effect between multiple excitation and ionization pathways, and is shown to be sensitive to molecular alignment and laser polarization. Molecular resonant excitation induces coherent ring electron currents, giving enhancement or suppression of the phase dependence. Pulse helicity effects control laser-induced electron dynamics in bichromatic circular polarization excitation. These phenomena are demonstrated by a molecular attosecond photoionization model and coherent electron current theory. The results offer a guiding principle for generating ultrafast magnetic fields and for studying coherent electron dynamics in complex molecular systems.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 95
Author(s):  
Yusong Wang ◽  
Yidi Wang ◽  
Wei Zheng

Pulse phase is the basic measurements of X-ray pulsar-based navigation, and thus how to estimate a pulse phase for an orbiting spacecraft is important. The current methods for on-orbit pulse phase estimation could provide an accurate estimation performance enhancing with the photon amount, but its central processing unit (CPU) time cost also increases sharply with the increase of photon amount. In this paper, an on-orbit pulse phase estimation method based on the cross-entropy adaptive moment estimation (CE-Adam) algorithm is proposed to reduce the CPU time cost while retaining decent estimation accuracy. This method combines the CE and Adam algorithms, and is able to obtain a global optimum with low CPU time cost. The performance of the proposed algorithm is verified by simulation data and real data from the Neutron Star Internal Composition Detector (NICER). The results show that the proposed algorithm could greatly reduce the CPU time cost, which is about 1.5% of the CE algorithm, and retain similar estimation accuracy of pulse phase with CE algorithm.


Author(s):  
S A Suleymanova ◽  
A N Kazantsev ◽  
J M Rankin ◽  
S V Logvinenko

Abstract We report the result of measurements of a gradual shift of the integrated pulses towards later spin phase of the anomalous pulsar B0943+10 at the high radio frequencies. We have used observations from the Arecibo Observatory and the GMRT at 327 and 325 MHz correspondingly. For the measurements we have proposed a special method for calculating the correct positions of the partially merged two components of the pulse profile shape with significant temporal changes in their amplitude ratio. The exponential change in the pulse phase with an amplitude of 4 ms and characteristic time of about 1 hour has been found. Comparison of our measurements at 325 and 327 MHz with those at the lower frequencies of 25–80, 62 and 112 MHz have shown that the character of the process does not depend on frequency across a wide frequency range. The result is very important for constraining the nature of the delay. It supports the assumption that the process results from changes in the vacuum gap near the surface of the pulsar. The further correlation between changes in the pulse phase and its intensity is discussed.


Author(s):  
Ning Zhou ◽  
Zhen Zhu ◽  
Lixue Dong ◽  
John Galvin

AbstractIn cochlear implants, loudness has been shown to grow more slowly with increasing pulse phase duration (PPD) than with pulse amplitude (PA), possibly due to “leaky” charge integration. This leakiness has been recently quantified in terms of “charge integration efficiency,” defined as the log difference between the PPD dynamic range and PA dynamic range (both expressed in charge units), relative to a common threshold anchor. Such leakiness may differ across electrodes and/or test ears, and may reflect underlying neural health. In this study, we examined the across-site variation of charge integration in recipients of Cochlear© devices. PPD and PA dynamic ranges were measured relative to two threshold anchors with either a 25- or 50-microsecond PPD. Strength-duration functions, previously shown to relate to survival of spiral ganglion cells and peripheral processes, were compared to charge integration efficiency on selected electrodes. Results showed no significant or systematic relationship between the across-site variation in charge integration efficiency and electrode position or threshold levels. Charge integration efficiency was poorer with the 50-μs threshold anchor, suggesting that greater leakiness was associated with larger PPD dynamic ranges. Poorer and more variable charge integration efficiency across electrodes was associated with longer duration of any hearing loss, consistent with the idea that poor integration is related to neural degeneration. More variable integration efficiency was also associated with poorer speech recognition performance across test ears. The slopes of the strength-duration functions at maximum acceptable loudness were significantly correlated with charge integration efficiency. However, the strength-duration slopes were not predictive of duration of any hearing loss or speech recognition performance in our participants. As such, charge integration efficiency may be a better candidate to measure leakiness in neural populations across the electrode array, as well as the general health of the auditory nerve in human cochlear implant recipients.


Laser Physics ◽  
2021 ◽  
Vol 31 (3) ◽  
pp. 035101
Author(s):  
A E Alekseev ◽  
B G Gorshkov ◽  
A V Bashaev ◽  
V T Potapov ◽  
M A Taranov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document