scholarly journals Discharge Identity of Medullary Inspiratory Neurons is Altered during Repetitive Fictive Cough

2012 ◽  
Vol 3 ◽  
Author(s):  
L. S. Segers ◽  
S. C. Nuding ◽  
A. Vovk ◽  
T. Pitts ◽  
D. M. Baekey ◽  
...  
Keyword(s):  

2002 ◽  
Vol 87 (2) ◽  
pp. 1057-1067 ◽  
Author(s):  
Akira Haji ◽  
Mari Okazaki ◽  
Hiromi Yamazaki ◽  
Ryuji Takeda

To assess the functional significance of late inspiratory (late-I) neurons in inspiratory off-switching (IOS), membrane potential and discharge properties were examined in vagotomized, decerebrate cats. During spontaneous IOS, late-I neurons displayed large membrane depolarization and associated discharge of action potentials that started in late inspiration, peaked at the end of inspiration, and ended during postinspiration. Depolarization was decreased by iontophoresis of dizocilpine and eliminated by tetrodotoxin. Stimulation of the vagus nerve or the nucleus parabrachialis medialis (NPBM) also evoked depolarization of late-I neurons and IOS. Waves of spontaneous chloride-dependent inhibitory postsynaptic potentials (IPSPs) preceded membrane depolarization during early inspiration and followed during postinspiration and stage 2 expiration of the respiratory cycle. Iontophoresed bicuculline depressed the IPSPs. Intravenous dizocilpine caused a greatly prolonged inspiratory discharge of the phrenic nerve (apneusis) and suppressed late-inspiratory depolarization as well as early-inspiratory IPSPs, resulting in a small constant depolarization throughout the apneusis. NPBM or vagal stimulation after dizocilpine produced small, stimulus-locked excitatory postsynaptic potentials (EPSPs) in late-I neurons. Neurobiotin-labeled late-I neurons revealed immunoreactivity for glutamic acid decarboxylase as well as N-methyl-d-aspartate (NMDA) receptors. These results suggest that late-I neurons are GABAergic inhibitory neurons, while the effects of bicuculline and dizocilpine indicate that they receive periodic waves of GABAergic IPSPs and glutamatergic EPSPs. The data lead to the conclusion that late-I neurons play an important inhibitory role in IOS. NMDA receptors are assumed to augment and/or synchronize late-inspiratory depolarization and discharge of late-I neurons, leading to GABA release and consequently off-switching of bulbar inspiratory neurons and phrenic motoneurons.



1989 ◽  
Vol 505 (1) ◽  
pp. 149-152 ◽  
Author(s):  
David F. Donnelly ◽  
Anthony L. Sica ◽  
Morton I. Cohen ◽  
Heng Zhang


2001 ◽  
Vol 85 (6) ◽  
pp. 2461-2467 ◽  
Author(s):  
Xuesi M. Shao ◽  
Jack L. Feldman

Cholinergic neurotransmission plays a role in regulation of respiratory pattern. Nicotine from cigarette smoke affects respiration and is a risk factor for sudden infant death syndrome (SIDS) and sleep-disordered breathing. The cellular and synaptic mechanisms underlying this regulation are not understood. Using a medullary slice preparation from neonatal rat that contains the preBötzinger Complex (preBötC), the hypothesized site for respiratory rhythm generation, and generates respiratory-related rhythm in vitro, we examined the effects of nicotine on excitatory neurotransmission affecting inspiratory neurons in preBötC and on the respiratory-related motor activity from hypoglossal nerve (XIIn). Microinjection of nicotine into preBötC increased respiratory frequency and decreased the amplitude of inspiratory bursts, whereas when injected into XII nucleus induced a tonic activity and an increase in amplitude but not in frequency of inspiratory bursts from XIIn. Bath application of nicotine (0.2–0.5 μM, approximately the arterial blood nicotine concentration immediately after smoking a cigarette) increased respiratory frequency up to 280% of control in a concentration-dependent manner. Nicotine decreased the amplitude to 82% and increased the duration to 124% of XIIn inspiratory bursts. In voltage-clamped preBötC inspiratory neurons (including neurons with pacemaker properties), nicotine induced a tonic inward current of −19.4 ± 13.4 pA associated with an increase in baseline noise. Spontaneous excitatory postsynaptic currents (sEPSCs) present during the expiratory period increased in frequency to 176% and in amplitude to 117% of control values; the phasic inspiratory drive inward currents decreased in amplitude to 66% and in duration to 89% of control values. The effects of nicotine were blocked by mecamylamine (Meca). The inspiratory drive current and sEPSCs were completely eliminated by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the presence or absence of nicotine. In the presence of tetrodotoxin (TTX), low concentrations of nicotine did not induce any tonic current or any increase in baseline noise, nor affect the input resistance in inspiratory neurons. In this study, we demonstrated that nicotine increased respiratory frequency and regulated respiratory pattern by modulating the excitatory neurotransmission in preBötC. Activation of nicotinic acetylcholine receptors (nAChRs) enhanced the tonic excitatory synaptic input to inspiratory neurons including pacemaker neurons and at the same time, inhibited the phasic excitatory coupling between these neurons. These mechanisms may account for the cholinergic regulation of respiratory frequency and pattern.



1991 ◽  
Vol 70 (3) ◽  
pp. 1265-1270 ◽  
Author(s):  
D. Zhou ◽  
M. J. Wasicko ◽  
J. M. Hu ◽  
W. M. St John

Our purpose was to compare further eupneic ventilatory activity with that of gasping. Decerebrate, paralyzed, and ventilated cats were used; the vagi were sectioned within the thorax caudal to the laryngeal branches. Activities of the phrenic nerve and medullary respiratory neurons were recorded. Antidromic invasion was used to define bulbospinal, laryngeal, or not antidromically activated units. The ventilatory pattern was reversibly altered to gasping by exposure to 1% carbon monoxide in air. In eupnea, activities of inspiratory neurons commenced at various times during inspiration, and for most the discharge frequency gradually increased. In gasping, the peak discharge frequency of inspiratory neurons was unaltered. However, all commenced activities at the start of the phrenic burst and reached peak discharge almost immediately. The discharge frequencies of all groups of expiratory neurons fell in gasping, with many neurons ceasing activity entirely. These data are consistent with the hypothesis that brain stem mechanisms controlling eupnea and gasping differ fundamentally.





1994 ◽  
Vol 77 (2) ◽  
pp. 679-683 ◽  
Author(s):  
Y. Nakazono ◽  
M. Aoki

This study aimed to determine whether upper cervical inspiratory neurons (UCINs), which are localized in the intermediolateral part of the gray matter of the upper cervical segments, have propriospinal connections to phrenic motoneurons of the ipsilateral lower cervical segment in anesthetized cats. Unit action potentials of UCINs were extracellularly recorded simultaneously with ipsilateral phrenic nerve activity. To eliminate the descending influences from medullary respiratory neurons to phrenic motoneurons, bulbospinal conduction paths were temporarily blocked by focal cooling applied to the ventral caudal medulla at the pyramidal decussation level by means of a cooling thermode (1 mm tip diam). By using a spike-triggered method, during cooling phrenic nerve activities were evoked by UCIN spikes that were elicited by microinjection of L-glutamate for 20 of the 55 (36%) UCIN units examined. The onset latencies of these phrenic motoneuron responses ranged from 1.5 to 7.1 ms (mean 3.6 ms), depending on synaptic transmission delays. These results clearly demonstrate that UCINs have, at least in part, excitatory mono- and paucisynaptic connections with ipsilateral phrenic motoneurons.



1991 ◽  
Vol 551 (1-2) ◽  
pp. 256-266 ◽  
Author(s):  
Y. Zheng ◽  
J.C. Barillot ◽  
A.L. Bianchi


Sign in / Sign up

Export Citation Format

Share Document