scholarly journals The Contribution of Surface Tension-Dependent Alveolar Septal Stress Concentrations to Ventilation-Induced Lung Injury in the Acute Respiratory Distress Syndrome

2020 ◽  
Vol 11 ◽  
Author(s):  
Carrie E. Perlman
2015 ◽  
Vol 118 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Angana Banerjee Kharge ◽  
You Wu ◽  
Carrie E. Perlman

In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome.


Sign in / Sign up

Export Citation Format

Share Document