scholarly journals Paradoxical Potentiation of Acid-Sensing Ion Channel 3 (ASIC3) by Amiloride via Multiple Mechanisms and Sites Within the Channel

2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel S. Matasic ◽  
Nicholas Holland ◽  
Mamta Gautam ◽  
David D. Gibbons ◽  
Nobuyoshi Kusama ◽  
...  

Acid-Sensing Ion Channels (ASICs) are proton-gated sodium-selective cation channels that have emerged as metabolic and pain sensors in peripheral sensory neurons and contribute to neurotransmission in the CNS. These channels and their related degenerin/epithelial sodium channel (DEG/ENaC) family are often characterized by their sensitivity to amiloride inhibition. However, amiloride can also cause paradoxical potentiation of ASIC currents under certain conditions. Here we characterized and investigated the determinants of paradoxical potentiation by amiloride on ASIC3 channels. While inhibiting currents induced by acidic pH, amiloride potentiated sustained currents at neutral pH activation. These effects were accompanied by alterations in gating properties including (1) an alkaline shift of pH-dependent activation, (2) inhibition of pH-dependent steady-state desensitization (SSD), (3) prolongation of desensitization kinetics, and (4) speeding of recovery from desensitization. Interestingly, extracellular Ca2+ was required for paradoxical potentiation and it diminishes the amiloride-induced inhibition of SSD. Site-directed mutagenesis within the extracellular non-proton ligand-sensing domain (E79A, E423A) demonstrated that these residues were critical in mediating the amiloride-induced inhibition of SSD. However, disruption of the purported amiloride binding site (G445C) within the channel pore blunted both the inhibition and potentiation of amiloride. Together, our results suggest that the myriad of modulatory and blocking effects of amiloride are the result of a complex competitive interaction between amiloride, Ca2+, and protons at probably more than one site in the channel.

1993 ◽  
Vol 296 (3) ◽  
pp. 811-815 ◽  
Author(s):  
M G Gore ◽  
P Greasley ◽  
G McAllister ◽  
C I Ragan

The fluorescence properties of residue Trp-219 in inositol monophosphatase are sensitive to the ionization of neighbouring groups. The pH-dependent changes in the fluorescence emission intensity and wavelength of maximum emission appear to arise as the result of two separate ionizations in the proximity of Trp-219, namely due to the ionization of His-217 and Cys-218. By studying the curve of fluorescence intensity against pH, given by the mutants Cys-218→Ala or His-217→Gln, the pK of His-217 was determined to be 7.54 and the pK of Cys-218 was estimated to be about 8.2. These mutants have altered kinetic parameters for catalytic Mg2+ ions and inhibitory Mg2+ and Li+ ions. The Cys-218→Ala mutant enzyme is not subject to inhibition by concentrations of Mg2+ ions up to 400 mM and has a specific activity of 156% of the maximum obtainable activity of the native enzyme. The His-217→Gln mutant enzyme shows reduced sensitivity to inhibition by Mg2+ and Li+ ions, and has a specific activity of 110% of that obtainable for the native enzyme.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1814-1819 ◽  
Author(s):  
Lena Serghides ◽  
Ian Crandall ◽  
Eric Hull ◽  
Kevin C. Kain

CD36 is an 88-kD glycoprotein involved in the cytoadherence ofPlasmodium falciparum–parasitized erythrocytes (PE) to endothelial cells. The molecular mechanisms involved in CD36-dependent cytoadherence were examined by expressing three CD36 homologues (human, murine, and rat) in COS-7 cells and observing their PE-binding characteristics over a pH range of 6.0 to 7.4 and following iodination of these receptors. PE binding to human CD36 was pH dependent, with peak binding at pH 6.8 to 7.0, and binding was unaffected by iodination. In contrast, PE adherence to murine and rat CD36 was insensitive to changes in pH, and iodination significantly reduced binding. We further show that the differences observed in the binding phenotype of human and rodent CD36 can be attributed to a single residue. Site-directed mutagenesis of the histidine at position 242 of human CD36 to tyrosine (found in rodent CD36) conferred the binding phenotype of rodent CD36 onto human CD36. Furthermore, substitution of the tyrosine at position 242 of rat CD36 for histidine conferred the binding phenotype of human CD36 onto rat CD36. These findings suggest that residue 242 is part of, or important to the conformation of, the PE-binding domain of CD36. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1814-1819 ◽  
Author(s):  
Lena Serghides ◽  
Ian Crandall ◽  
Eric Hull ◽  
Kevin C. Kain

Abstract CD36 is an 88-kD glycoprotein involved in the cytoadherence ofPlasmodium falciparum–parasitized erythrocytes (PE) to endothelial cells. The molecular mechanisms involved in CD36-dependent cytoadherence were examined by expressing three CD36 homologues (human, murine, and rat) in COS-7 cells and observing their PE-binding characteristics over a pH range of 6.0 to 7.4 and following iodination of these receptors. PE binding to human CD36 was pH dependent, with peak binding at pH 6.8 to 7.0, and binding was unaffected by iodination. In contrast, PE adherence to murine and rat CD36 was insensitive to changes in pH, and iodination significantly reduced binding. We further show that the differences observed in the binding phenotype of human and rodent CD36 can be attributed to a single residue. Site-directed mutagenesis of the histidine at position 242 of human CD36 to tyrosine (found in rodent CD36) conferred the binding phenotype of rodent CD36 onto human CD36. Furthermore, substitution of the tyrosine at position 242 of rat CD36 for histidine conferred the binding phenotype of human CD36 onto rat CD36. These findings suggest that residue 242 is part of, or important to the conformation of, the PE-binding domain of CD36. © 1998 by The American Society of Hematology.


2005 ◽  
Vol 71 (9) ◽  
pp. 5290-5296 ◽  
Author(s):  
Wei Zhang ◽  
Yuan Liu ◽  
Huabao Zheng ◽  
Sheng Yang ◽  
Weihong Jiang

ABSTRACT In the present study, glutaryl-7-amino cephalosporanic acid acylase from Pseudomonas sp. strain 130 (CA130) was mutated to improve its enzymatic activity and stability. Based on the crystal structure of CA130, two series of amino acid residues, one from those directly involved in catalytic function and another from those putatively involved in surface charge, were selected as targets for site-directed mutagenesis. In the first series of experiments, several key residues in the substrate-binding pocket were substituted, and the genes were expressed in Escherichia coli for activity screening. Two of the mutants constructed, Y151αF and Q50βN, showed two- to threefold-increased catalytic efficiency (k cat/Km ) compared to wild-type CA130. Their Km values were decreased by ca. 50%, and the k cat values increased to 14.4 and 16.9 s−1, respectively. The ability of these mutants to hydrolyze adipoyl 6-amino penicillinic acid was also improved. In the second series of mutagenesis, several mutants with enhanced stabilities were identified. Among them, R121βA and K198βA had a 30 to 58% longer half-life than wild-type CA130, and K198βA and D286βA showed an alkaline shift of optimal pH by about 1.0 to 2.0 pH units. To construct an engineered enzyme with the properties of both increased activity and stability, the double mutant Q50βN/K198βA was expressed. This enzyme was purified and immobilized for catalytic analysis. The immobilized mutant enzyme showed a 34.2% increase in specific activity compared to the immobilized wild-type CA130.


Sign in / Sign up

Export Citation Format

Share Document