ion selectivity
Recently Published Documents


TOTAL DOCUMENTS

1021
(FIVE YEARS 239)

H-INDEX

79
(FIVE YEARS 11)

2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Cody L. Ritt ◽  
Mingjie Liu ◽  
Tuan Anh Pham ◽  
Razi Epsztein ◽  
Heather J. Kulik ◽  
...  

Machine learning unveils molecular transport mechanisms obscured by entropy-enthalpy compensation in polymeric membranes.


2021 ◽  
Author(s):  
Xinyu Teng ◽  
Danqi Sheng ◽  
Jin Wang ◽  
Ye Yu ◽  
Motoyuki Hattori

MgtE is a Mg2+-selective ion channel whose orthologs are widely distributed from prokaryotes to eukaryotes, including humans, and play an important role in the maintenance of cellular Mg2+ homeostasis. Previous functional analyses showed that MgtE transports divalent cations with high selectivity for Mg2+ over Ca2+. Whereas the high-resolution structure determination of the MgtE transmembrane (TM) domain in complex with Mg2+ ions revealed a Mg2+ recognition mechanism of MgtE, the previous Ca2+-bound structure of the MgtE TM domain was determined only at moderate resolution (3.2 angstrom resolution), which was insufficient to visualize the water molecules coordinated to Ca2+ ions. Thus, the structural basis of the ion selectivity of MgtE for Mg2+ over Ca2+ has remained unclear. Here, we showed that the metal-binding site of the MgtE TM domain binds to Mg2+ ~500-fold more strongly than Ca2+. We then determined the crystal structure of the MgtE TM domain in complex with Ca2+ ions at a higher resolution (2.5 angstrom resolution), allowing us to reveal hexahydrated Ca2+, which is similarly observed in the previously determined Mg2+-bound structure but with extended metal-oxygen bond lengths. Our structural, biochemical, and computational analyses provide mechanistic insights into the ion selectivity of MgtE for Mg2+ over Ca2+.


Author(s):  
Chao Li ◽  
Pengxiang Liu ◽  
Yi Zhai ◽  
Liqian Yao ◽  
Hu Lin ◽  
...  
Keyword(s):  

2021 ◽  
pp. 2107878
Author(s):  
Mojtaba Abdollahzadeh ◽  
Milton Chai ◽  
Ehsan Hosseini ◽  
Mohammad Zakertabrizi ◽  
Munirah Mohammad ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8343
Author(s):  
Zhanyi Xiang ◽  
Yifei Jing ◽  
Hidekazu Ikezaki ◽  
Kiyoshi Toko

The lipid phosphoric acid di-n-decyl ester (PADE) has played an important role in the development of taste sensors. As previously reported, however, the concentration of PADE and pH of the solution affected the dissociation of H+, which made the measurement results less accurate and stable. In addition, PADE caused deterioration in the response to bitterness because PADE created the acidic environment in the membrane. To solve these problems, our past study tried to replace the PADE with a completely dissociated substance called tetrakis [3,5-bis (trifluoromethyl) phenyl] borate sodium salt dehydrate (TFPB) as lipid. To find out whether the two substances can be effectively replaced, it is necessary to perform an in-depth study on the properties of the two membranes themselves. In this study, we fabricated two types of membrane electrodes, based on PADE or TFPB, respectively, using 2-nitrophenyl octyl ether (NPOE) as a plasticizer. We measured the selectivity to cations such as Cs+, K+, Na+ and Li+, and also the membrane impedance of the membranes comprising PADE or TFPB of the different concentrations. As a result, we found that any concentration of PADE membranes always had low ion selectivity, while the ion selectivity of TFPB membranes was concentration-dependent, showing increasing ion selectivity with the TFPB concentrations. The ion selectivity order was Cs+>K+>Na+>Li+. The hydration of ions was considered to participate in this phenomenon. In addition, the membrane impedance decreased with increasing PADE and TFPB concentrations, while the magnitudes differed, implying that there is a difference in the dissociation of the two substances. The obtained results will contribute to the development of novel receptive membranes of taste sensors.


Author(s):  
Guixiang Wang ◽  
Haitao Zou ◽  
Xiaobo Zhu ◽  
Mei Ding ◽  
Chuankun Jia

Abstract Zinc-based redox flow batteries (ZRFBs) have been considered as ones of the most promising large-scale energy storage technologies owing to their low cost, high safety, and environmental friendliness. However, their commercial application is still hindered by a few key problems. First, the hydrogen evolution and zinc dendrite formation cause poor cycling life, of which needs to ameliorated or overcome by finding suitable anolytes. Second, the stability and energy density of catholytes are unsatisfactory due to oxidation, corrosion, and low electrolyte concentration. Meanwhile, highly catalytic electrode materials remain to be explored and the ion selectivity and cost efficiency of membrane materials demands further improvement. In this review, we summarize different types of ZRFBs according to their electrolyte environments including ZRFBs using neutral, acidic, and alkaline electrolytes, then highlight the advances of key materials including electrode and membrane materials for ZRFBs, and finally discuss the challenges and perspectives for the future development of high-performance ZRFBs.


Desalination ◽  
2021 ◽  
Vol 520 ◽  
pp. 115325
Author(s):  
Yanmeng Cai ◽  
Wen Zhang ◽  
Rongli Fang ◽  
Dongdong Zhao ◽  
Yue Wang ◽  
...  

2021 ◽  
Vol 639 ◽  
pp. 119752
Author(s):  
Faezeh Arshadi ◽  
Munirah Mohammad ◽  
Ehsan Hosseini ◽  
Hadi Ahmadi ◽  
Mohsen Asadnia ◽  
...  
Keyword(s):  

Author(s):  
Vanesa Racigh ◽  
Gustavo Pierdominici-Sottile ◽  
Juliana Palma

2021 ◽  
Vol 13 ◽  
Author(s):  
Sampath Kumar ◽  
Sanjay S. Kumar

Glutamatergic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors are implicated in diverse functions ranging from synaptic plasticity to cell death. They are heterotetrameric proteins whose subunits are derived from multiple distinct gene families. The subunit composition of these receptors determines their permeability to monovalent and/or divalent cations, but it is not entirely clear how this selectivity arises in native and recombinantly-expressed receptor populations. By analyzing the sequence of amino acids lining the selectivity filters within the pore forming membrane helices (M2) of these subunits and by correlating subunit stoichiometry of these receptors with their ability to permeate Na+ and/or Ca2+, we propose here a mathematical model for predicting cation selectivity and permeability in these receptors. The model proposed is based on principles of charge attractivity and charge neutralization within the pore forming region of these receptors; it accurately predicts and reconciles experimental data across various platforms including Ca2+ permeability of GluA2-lacking AMPARs and ion selectivity within GluN3-containing di- and tri-heteromeric NMDARs. Additionally, the model provides insights into biophysical mechanisms regulating cation selectivity and permeability of these receptors and the role of various subunits in these processes.


Sign in / Sign up

Export Citation Format

Share Document