scholarly journals Guard-Cell Hexokinase Increases Water-Use Efficiency Under Normal and Drought Conditions

2019 ◽  
Vol 10 ◽  
Author(s):  
Gilor Kelly ◽  
Aiman Egbaria ◽  
Belal Khamaisi ◽  
Nitsan Lugassi ◽  
Ziv Attia ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Xu ◽  
Yu Long ◽  
Xueying Feng ◽  
Xujun Zhu ◽  
Na Sai ◽  
...  

AbstractThe non-protein amino acid γ-aminobutyric acid (GABA) has been proposed to be an ancient messenger for cellular communication conserved across biological kingdoms. GABA has well-defined signalling roles in animals; however, whilst GABA accumulates in plants under stress it has not been determined if, how, where and when GABA acts as an endogenous plant signalling molecule. Here, we establish endogenous GABA as a bona fide plant signal, acting via a mechanism not found in animals. Using Arabidopsis thaliana, we show guard cell GABA production is necessary and sufficient to reduce stomatal opening and transpirational water loss, which improves water use efficiency and drought tolerance, via negative regulation of a stomatal guard cell tonoplast-localised anion transporter. We find GABA modulation of stomata occurs in multiple plants, including dicot and monocot crops. This study highlights a role for GABA metabolism in fine tuning physiology and opens alternative avenues for improving plant stress resilience.


2020 ◽  
Vol 11 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Daniel Buchvaldt Amby ◽  
Josefine Nymark Hegelund ◽  
Lorenzo Fimognari ◽  
Dominik K. Großkinsky ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 153 ◽  
Author(s):  
Katherine Sinacore ◽  
Heidi Asbjornsen ◽  
Virginia Hernandez-Santana ◽  
Jefferson S. Hall

Drought conditions may have differential impacts on growth, transpiration, and water use efficiency (WUE) in mixed species and monospecific planted forests. Understanding the resistance (i.e., the capacity to maintain processes unchanged) of different tree species to drought, and how resistance is affected by complementary interactions within species mixtures, is particularly important in the seasonally dry tropics where projected increases in the frequency and severity of drought threaten tree planting efforts and water resources. Complementary interactions between species may lead to more resistant stands if complementarity leads to greater buffering capacity during drought. We examined growth, transpiration, and WUE of mixtures and monocultures of Terminalia amazonia (J.F. Gmel.) Exell and Dalbergia retusa Hemsl. before and during a prolonged drought using intensive measurements of tree sap flow and growth. Tree sapwood area growth was highest for T. amazonia in mixtures during normal (6.78 ± 4.08 mm2 yr−1) and drought (7.12 ± 4.85 mm2 yr−1) conditions compared to the other treatments. However, stand sapwood area growth was greatest for T. amazonia monocultures, followed by mixtures, and finally, D. retusa monocultures. There was a significant decrease in stand transpiration during drought for both mixtures and T. amazonia monocultures, while Dalbergia retusa monocultures were most water use efficient at both the tree and stand level. Treatments showed different levels of resistance to drought, with D. retusa monocultures being the most resistant, with non-significant changes of growth and transpiration before and during drought. Combining species with complementary traits and avoiding combinations where one species dominates the other, may maximize complementary interactions and reduce competitive interactions, leading to greater resistance to drought conditions.


2014 ◽  
Vol 111 (7) ◽  
pp. 2836-2841 ◽  
Author(s):  
D. L. Des Marais ◽  
L. C. Auchincloss ◽  
E. Sukamtoh ◽  
J. K. McKay ◽  
T. Logan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Omkar Maharudra Limbalkar ◽  
Rajendra Singh ◽  
Parvesh Kumar ◽  
Joghee Nanjundan ◽  
Chiter Mal Parihar ◽  
...  

Among Brassica species, Ethiopian mustard (Brassica carinata A. Braun) is known to tolerate most abiotic stresses, including drought. Drought caused by low and erratic rainfall in semi-arid regions consistently challenges rapeseed mustard productivity. Development of B. carinata-derived lines (CDLs) in Brassica juncea (L.) Czern. nuclear background, carrying genomic segments from B. carinata, are expected to tolerate moisture deficit stress conditions. The present study was, thus, aimed to establish the phenomenon “heterosis” for drought tolerance and water use efficiency by evaluating 105 hybrids developed from intermating 15 CDLs in half diallel fashion. Data on 17 seed yield and yield contributing traits were recorded under two different environments, viz., irrigated and rainfed conditions. Traits under study were found to be governed by both additive and non-additive types of gene action. Average degree of dominance was higher (>2) for yield and yield contributing traits, viz., secondary branches/plant, point to first siliqua on main shoot, total siliquae/plant, 1,000-seed weight, seed yield/plant, biological yield, harvest index, and seed yield/hectare under rainfed conditions, clearly indicating that higher productivity under drought conditions can be realised through the development of hybrids. Out of 15, highly significant general combining ability (GCA) effects for seven CDLs were observed under rainfed condition. Furthermore, nine and six hybrids expressed highly significant specific combining ability (SCA) effects and > 50% heterobeltiosis for yield contributing traits under rainfed and irrigated conditions, respectively. Water use efficiency (WUE) of parental CDLs and hybrids varied from 2.05 to 2.57 kg m–3 under rainfed, while 1.10 to 1.28 kg m–3 under irrigated conditions. Hybrids expressed higher WUE than parental lines under both water regimes. Furthermore, selection indices such as drought tolerance index (DTI) and mean relative performance (MRP) were identified to be efficient in the selection of productive CDLs and hybrids under drought conditions. Nine hybrids, identified as highly productive in the present study, can further be exploited for improving the yield of Indian mustard in drought-prone areas. Usefulness of interspecific hybridisation in the development of B. carinata-derived B. juncea lines for improving heterosis and WUE is, thus, well demonstrated through the present study.


Nature Plants ◽  
2021 ◽  
Author(s):  
Mareike Jezek ◽  
Fernanda A. L. Silva-Alvim ◽  
Adrian Hills ◽  
Naomi Donald ◽  
Maryam Rahmati Ishka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document