scholarly journals Simulating Emotions: An Active Inference Model of Emotional State Inference and Emotion Concept Learning

2019 ◽  
Vol 10 ◽  
Author(s):  
Ryan Smith ◽  
Thomas Parr ◽  
Karl J. Friston
2020 ◽  
Vol 43 ◽  
Author(s):  
Ryan Smith ◽  
Richard D. Lane

Abstract The active inference framework offers an attractive starting point for understanding cultural cognition. Here, we argue that affective dynamics are essential to include when constructing this type of theory. We highlight ways in which interactions between emotional responses and the perception of those responses, both within and between individuals, can play central roles in both motivating and constraining sociocultural practices.


2019 ◽  
Vol 15 (1) ◽  
pp. e1006267 ◽  
Author(s):  
Anna C. Sales ◽  
Karl J. Friston ◽  
Matthew W. Jones ◽  
Anthony E. Pickering ◽  
Rosalyn J. Moran

2019 ◽  
Vol 10 ◽  
Author(s):  
Axel Constant ◽  
Maxwell J. D. Ramstead ◽  
Samuel P. L. Veissière ◽  
Karl Friston

2019 ◽  
Author(s):  
Ryan Smith ◽  
Philipp Schwartenbeck ◽  
Thomas Parr ◽  
Karl J. Friston

AbstractWithin computational neuroscience, the algorithmic and neural basis of structure learning remains poorly understood. Concept learning is one primary example, which requires both a type of internal model expansion process (adding novel hidden states that explain new observations), and a model reduction process (merging different states into one underlying cause and thus reducing model complexity via meta-learning). Although various algorithmic models of concept learning have been proposed within machine learning and cognitive science, many are limited to various degrees by an inability to generalize, the need for very large amounts of training data, and/or insufficiently established biological plausibility. Using concept learning as an example case, we introduce a novel approach for modeling structure learning – and specifically state-space expansion and reduction – within the active inference framework and its accompanying neural process theory. Our aim is to demonstrate its potential to facilitate a novel line of active inference research in this area. The approach we lay out is based on the idea that a generative model can be equipped with extra (hidden state or cause) ‘slots’ that can be engaged when an agent learns about novel concepts. This can be combined with a Bayesian model reduction process, in which any concept learning – associated with these slots – can be reset in favor of a simpler model with higher model evidence. We use simulations to illustrate this model’s ability to add new concepts to its state space (with relatively few observations) and increase the granularity of the concepts it currently possesses. We also simulate the predicted neural basis of these processes. We further show that it can accomplish a simple form of ‘one-shot’ generalization to new stimuli. Although deliberately simple, these simulation results highlight ways in which active inference could offer useful resources in developing neurocomputational models of structure learning. They provide a template for how future active inference research could apply this approach to real-world structure learning problems and assess the added utility it may offer.


2019 ◽  
Author(s):  
Ryan Smith ◽  
Thomas Parr ◽  
Karl J. Friston

AbstractThe ability to conceptualize and understand one’s own affective states and responses – or “emotional awareness” (EA) – is reduced in multiple psychiatric populations; it is also positively correlated with a range of adaptive cognitive and emotional traits. While a growing body of work has investigated the neurocognitive basis of EA, the neurocomputational processes underlying this ability have received limited attention. Here, we present a formal Active Inference (AI) model of emotion conceptualization that can simulate the neurocomputational (Bayesian) processes associated with learning about emotion concepts and inferring the emotions one is feeling in a given moment. We validate the model and inherent constructs by showing (i) it can successfully acquire a repertoire of emotion concepts in its “childhood”, as well as (ii) acquire new emotion concepts in synthetic “adulthood,” and (iii) that these learning processes depend on early experiences, environmental stability, and habitual patterns of selective attention. These results offer a proof of principle that cognitive-emotional processes can be modeled formally, and highlight the potential for both theoretical and empirical extensions of this line of research on emotion and emotional disorders.


2021 ◽  
Author(s):  
Riccardo Proietti ◽  
Giovanni Pezzulo ◽  
Alessia Tessari

We advance a novel computational model of the acquisition of a hierarchical action repertoire and its use for observation, understanding and motor control. The model is grounded in a principled framework to understand brain and cognition: active inference. We exemplify the functioning of the model by presenting four simulations of a tennis learner who observes a teacher performing tennis shots and forms hierarchical representations of the observed actions - including both actions that are already in her repertoire and novel actions - and finally imitates them. Our simulations that show that the agent’s oculomotor activity implements an active information sampling strategy that permits inferring the kinematics aspects of the observed movement, which lie at the lowest level of the action hierarchy. In turn, this low-level kinematic inference supports higher-level inferences about deeper aspects of the observed actions, such as their proximal goals and intentions. Finally, the inferred action representations can steer imitative motor responses, but interfere with the execution of different actions. Taken together, our simulations show that the same hierarchical active inference model provides a unified account of action observation, understanding, learning and imitation. Finally, our model provides a computational rationale to explain the neurobiological underpinnings of visuomotor cognition, including the multiple routes for action understanding in the dorsal and ventral streams and mirror mechanisms.


2016 ◽  
Vol 24 (5) ◽  
pp. 350-372 ◽  
Author(s):  
Rui Silva ◽  
Luís Louro ◽  
Tiago Malheiro ◽  
Wolfram Erlhagen ◽  
Estela Bicho

2021 ◽  
Author(s):  
Francesco Mannella ◽  
Federico Maggiore ◽  
Manuel Baltieri ◽  
Giovanni Pezzulo

Rodents use whisking to probe actively their environment and to locate objects in space, hence providing a paradigmatic biological example of active sensing. Numerous studies show that the control of whisking has anticipatory aspects. For example, rodents target their whisker protraction to the distance at which they expect objects, rather than just reacting fast to contacts with unexpected objects. Here we characterize the anticipatory control of whisking in rodents as an active inference process. In this perspective, the rodent is endowed with a prior belief that it will touch something at the end of the whisker protraction, and it continuously modulates its whisking amplitude to minimize (proprioceptive and somatosensory) prediction errors arising from an unexpected whisker-object contact, or from a lack of an expected contact. We will use the model to qualitatively reproduce key empirical findings about the ways rodents modulate their whisker amplitude during exploration and the scanning of (expected or unexpected) objects. Furthermore, we will discuss how the components of active inference model can in principle map to the neurobiological circuits of rodent whisking.


Sign in / Sign up

Export Citation Format

Share Document