scholarly journals Deep Learning-Based Natural Language Processing for Screening Psychiatric Patients

2021 ◽  
Vol 11 ◽  
Author(s):  
Hong-Jie Dai ◽  
Chu-Hsien Su ◽  
You-Qian Lee ◽  
You-Chen Zhang ◽  
Chen-Kai Wang ◽  
...  

The introduction of pre-trained language models in natural language processing (NLP) based on deep learning and the availability of electronic health records (EHRs) presents a great opportunity to transfer the “knowledge” learned from data in the general domain to enable the analysis of unstructured textual data in clinical domains. This study explored the feasibility of applying NLP to a small EHR dataset to investigate the power of transfer learning to facilitate the process of patient screening in psychiatry. A total of 500 patients were randomly selected from a medical center database. Three annotators with clinical experience reviewed the notes to make diagnoses for major/minor depression, bipolar disorder, schizophrenia, and dementia to form a small and highly imbalanced corpus. Several state-of-the-art NLP methods based on deep learning along with pre-trained models based on shallow or deep transfer learning were adapted to develop models to classify the aforementioned diseases. We hypothesized that the models that rely on transferred knowledge would be expected to outperform the models learned from scratch. The experimental results demonstrated that the models with the pre-trained techniques outperformed the models without transferred knowledge by micro-avg. and macro-avg. F-scores of 0.11 and 0.28, respectively. Our results also suggested that the use of the feature dependency strategy to build multi-labeling models instead of problem transformation is superior considering its higher performance and simplicity in the training process.

2021 ◽  
Author(s):  
Oscar Nils Erik Kjell ◽  
H. Andrew Schwartz ◽  
Salvatore Giorgi

The language that individuals use for expressing themselves contains rich psychological information. Recent significant advances in Natural Language Processing (NLP) and Deep Learning (DL), namely transformers, have resulted in large performance gains in tasks related to understanding natural language such as machine translation. However, these state-of-the-art methods have not yet been made easily accessible for psychology researchers, nor designed to be optimal for human-level analyses. This tutorial introduces text (www.r-text.org), a new R-package for analyzing and visualizing human language using transformers, the latest techniques from NLP and DL. Text is both a modular solution for accessing state-of-the-art language models and an end-to-end solution catered for human-level analyses. Hence, text provides user-friendly functions tailored to test hypotheses in social sciences for both relatively small and large datasets. This tutorial describes useful methods for analyzing text, providing functions with reliable defaults that can be used off-the-shelf as well as providing a framework for the advanced users to build on for novel techniques and analysis pipelines. The reader learns about six methods: 1) textEmbed: to transform text to traditional or modern transformer-based word embeddings (i.e., numeric representations of words); 2) textTrain: to examine the relationships between text and numeric/categorical variables; 3) textSimilarity and 4) textSimilarityTest: to computing semantic similarity scores between texts and significance test the difference in meaning between two sets of texts; and 5) textProjection and 6) textProjectionPlot: to examine and visualize text within the embedding space according to latent or specified construct dimensions (e.g., low to high rating scale scores).


2021 ◽  
Author(s):  
Yoojoong Kim ◽  
Jeong Moon Lee ◽  
Moon Joung Jang ◽  
Yun Jin Yum ◽  
Jong-Ho Kim ◽  
...  

BACKGROUND With advances in deep learning and natural language processing, analyzing medical texts is becoming increasingly important. Nonetheless, a study on medical-specific language models has not yet been conducted given the importance of medical texts. OBJECTIVE Korean medical text is highly difficult to analyze because of the agglutinative characteristics of the language as well as the complex terminologies in the medical domain. To solve this problem, we collected a Korean medical corpus and used it to train language models. METHODS In this paper, we present a Korean medical language model based on deep learning natural language processing. The proposed model was trained using the pre-training framework of BERT for the medical context based on a state-of-the-art Korean language model. RESULTS After pre-training, the proposed method showed increased accuracies of 0.147 and 0.148 for the masked language model with next sentence prediction. In the intrinsic evaluation, the next sentence prediction accuracy improved by 0.258, which is a remarkable enhancement. In addition, the extrinsic evaluation of Korean medical semantic textual similarity data showed a 0.046 increase in the Pearson correlation. CONCLUSIONS The results demonstrated the superiority of the proposed model for Korean medical natural language processing. We expect that our proposed model can be extended for application to various languages and domains.


Author(s):  
Nisrine Ait Khayi ◽  
Vasile Rus ◽  
Lasang Tamang

The transfer learning pretraining-finetuning  paradigm has revolutionized the natural language processing field yielding state-of the art results in  several subfields such as text classification and question answering. However, little work has been done investigating pretrained language models for the  open student answer assessment task. In this paper, we fine tune pretrained T5, BERT, RoBERTa, DistilBERT, ALBERT and XLNet models on the DT-Grade dataset which contains freely generated (or open) student answers together with judgment of their correctness. The experimental results demonstrated the effectiveness of these models based on the transfer learning pretraining-finetuning paradigm for open student answer assessment. An improvement of 8%-15% in accuracy was obtained over previous methods. Particularly, a T5 based method led to state-of-the-art results with an accuracy and F1 score of 0.88.


Author(s):  
Mario Jojoa Acosta ◽  
Gema Castillo-Sánchez ◽  
Begonya Garcia-Zapirain ◽  
Isabel de la Torre Díez ◽  
Manuel Franco-Martín

The use of artificial intelligence in health care has grown quickly. In this sense, we present our work related to the application of Natural Language Processing techniques, as a tool to analyze the sentiment perception of users who answered two questions from the CSQ-8 questionnaires with raw Spanish free-text. Their responses are related to mindfulness, which is a novel technique used to control stress and anxiety caused by different factors in daily life. As such, we proposed an online course where this method was applied in order to improve the quality of life of health care professionals in COVID 19 pandemic times. We also carried out an evaluation of the satisfaction level of the participants involved, with a view to establishing strategies to improve future experiences. To automatically perform this task, we used Natural Language Processing (NLP) models such as swivel embedding, neural networks, and transfer learning, so as to classify the inputs into the following three categories: negative, neutral, and positive. Due to the limited amount of data available—86 registers for the first and 68 for the second—transfer learning techniques were required. The length of the text had no limit from the user’s standpoint, and our approach attained a maximum accuracy of 93.02% and 90.53%, respectively, based on ground truth labeled by three experts. Finally, we proposed a complementary analysis, using computer graphic text representation based on word frequency, to help researchers identify relevant information about the opinions with an objective approach to sentiment. The main conclusion drawn from this work is that the application of NLP techniques in small amounts of data using transfer learning is able to obtain enough accuracy in sentiment analysis and text classification stages.


Author(s):  
K.G.C.M Kooragama ◽  
L.R.W.D. Jayashanka ◽  
J.A. Munasinghe ◽  
K.W. Jayawardana ◽  
Muditha Tissera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document