scholarly journals Understanding Factors Influencing Farmers' Engagement in Watershed Management Activities

2021 ◽  
Vol 5 ◽  
Author(s):  
Suraj Upadhaya ◽  
J. Gordon Arbuckle

Studies have pointed to a positive relationship between farmers' active engagement in watershed management (WM) and soil and water conservation practice adoption. If farmers' involvement in WM leads to more conservation, what predicts WM participation? This study seeks to answer that question through binomial logistic regression analysis of data from a survey of 6,006 Iowa farmers conducted to support the implementation of the Iowa Nutrient Reduction Strategy (NRS). Results indicate that public and private sector information sources, awareness of and attitudes regarding nutrient loss reduction strategies, farm contiguity to water bodies, and cost-share and technical assistance were positive predictors of farmers' engagement in WM, while lower agronomic self-efficacy, farm press as an information source, greater age, and higher farm sales were negative. Findings point to several potential actions to improve farmer involvement in WM: (1) more effectively engage with the farm press to disseminate information about the benefits of WM, (2) increase outreach to larger-scale farmers, and (3) focus on nutrient loss management capacity building. Further, a continued emphasis on awareness and attitudes related to the NRS and related actions, such as watershed management, may guide efforts to recruit farmers into watershed groups to help improve soil and water conservation outcomes.

Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
S. V. Shejale ◽  
◽  
S. B. Nandgude ◽  
S. S. Salunkhe ◽  
M. A. Phadtare ◽  
...  

Present research work was carried out on soil erosion and crop productivity loss in Palghar and Thane districts. The study also describes tolerable soil loss and relationship between top-soil loss and yield loss. The estimated average annual soil loss was 40.45 t ha-1yr-1 before adoption of the soil and water conservation measures (by USLE method) and estimated average tolerable soil loss was 9.36 t ha-1 yr-1, for Palghar district. Similarly, for Thane district the estimated average annual soil loss and tolerable soil loss were found to be 35.89 t ha-1 yr-1 and 9.61 t ha-1 yr-1, respectively for Thane district. The estimated average conservation practice factor (P) factors were obtained as 0.32 for Palghar district and 0.30 for Thane district to bring the soil loss below the tolerable limit. After adoption of soil and water conservation measures, the estimated soil loss were 9.02 t ha-1 yr-1 and 9.38 t ha-1 yr-1 for Palghar and Thane districts, respectively.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1333 ◽  
Author(s):  
Yuguo Han ◽  
Gary Feng ◽  
Ying Ouyang

Rainfall is a major dynamic source of soil erosion and nutrient loss on slopes. Soil and water conservation practices and agricultural activities can change the soil surface morphology and thus affect erosion and nutrient losses. This study focused on the effects of several typical soil and water conservation practices and agricultural land, for the purpose of: (1) determining how these practices prevent erosion and nutrient loss and identifying the hydrodynamic mechanisms; and (2) determining the application conditions for different practices. Runoff, sediment, total nitrogen (TN) and total phosphorus (TP) in fish-scale pits, agricultural land, narrow terraces, shrub cover and bare land, under rainfall events in rainy seasons (from May to November) during the 2010–2015 period, were monitored. Slope hydrodynamic mechanisms and application conditions of these practices were also investigated. The results showed that compared with bare land, fish-scale pits performed the best in preventing runoff, sediment, TN and TP, followed by 30% shrub coverage, narrow terraces and agricultural land, successively. Total runoff, sediment, TN and TP losses in fish-scale pits site were 19.70%, 2.03%, 10.10% and 35.97% of those in bare land of the same area, respectively. Soil and water conservation practices could change the hydraulic characteristics of slopes, decrease Re (Reynolds) and Fr (Froude) numbers, thereby decreasing runoff, sediment, TN and TP losses. Fish-scale pits were suitable for the areas with small single rainfall and good water permeability. When rainfall was greater than 60 mm, narrow terraces had highest efficiency in reducing sediment loss; therefore, they were suitable for the areas with relatively high rainfall intensity and soils similar to the sandy loams of the study area. As to the practice of covering land with plants, the effect was sustainable due to the plants’ long-term growth. Agricultural land was not recommended since the losses on it were relatively higher due to the impact of human activities. In reality, these practices may be applied in combination so as to effectively control water, soil and nutrient losses.


2015 ◽  
Vol 3 (3) ◽  
pp. 161-169 ◽  
Author(s):  
Gopal Lal Bagdi ◽  
Prasanta Kumar Mishra ◽  
Ravi Sankar Kurothe ◽  
Swarn Lata Arya ◽  
Shekhargouda Linganagouda Patil ◽  
...  

2019 ◽  
Vol 44 (2) ◽  
pp. 251-266 ◽  
Author(s):  
Hailu Kendie Addis ◽  
Atikilt Abera ◽  
Legese Abebaw

Soil and water conservation (SWC) interventions are needed to control rainfall-driven erosion, and profitability of SWC measures at the sub-catchment scale emerges as the principal reason for their adoption. This study carried out a cost–benefit analysis of SWC measures in mountainous agricultural catchments. Physical data were obtained through field measurements of discharge, sediment and nutrient loss at the sub-catchment scale with and without SWC measures. The major cost benefits of various measures implemented in the study area were quantified using net present value (NPV), and direct market prices were employed in valuing the cost of items required for crop production. The results revealed that sediment loss decreased by 8.78 Mg ha−1 y−1 (46.8%) due to SWC measures, and the cost of production inputs, such as fertilizer (urea) and lime, was reduced by $17.97 ha−1 y−1 and $3.63 ha−1 y−1, respectively. Furthermore, crop yield was enhanced by 13% for teff, 19.4% for sorghum and 19.42% for chickpeas, which is equivalent to economic returns of $102, $96.9 and $140.25 ha−1 y−1, respectively. The total discounted cost of SWC interventions was about $331.74. This includes establishment costs, maintenance costs, input costs and the costs resulting from lost productive land. In sum, the total discounted benefits of SWC measures were the enhancement of crop production, a reduction in lime requirement and a reduction in the loss of total nitrogen and sediment, estimated at about $809.42. Hence, it is possible to deduce that SWC measures reduced nutrient depletion and greatly improved crop yield with a NPV of $477.68 ha−1. The results strongly suggest that SWC measures in the study sub-catchment, as well as in nearby areas with a similar indigenous SWC adoption strategy, topographic conditions and agroclimatic characteristics, should be maintained.


Sign in / Sign up

Export Citation Format

Share Document