scholarly journals Simulation on Cooperative Changeover of Production Team Using Hybrid Modeling Method

Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 204
Author(s):  
Xiaodong Zhang ◽  
Yiqi Wang ◽  
Bingcun Xu

In the multi-variety and small-quantity manufacturing environment, changeover operation occurs frequently, and cooperative changeover method is often used as a way to shorten the changeover time and balance the workload. However, more workers and tasks will be affected by cooperative changeover. As such, the effectiveness of the cooperative changeover is dependent on other factors, such as the scope of cooperation and the proportion of newly introduced products. For this reason, this paper proposes a hybrid modeling method to support the simulation study of the production team's cooperative changeover strategies under various environments. Firstly, a hybrid simulation modeling method consisting of multi-agent systems and discrete events is introduced. Secondly, according to the scope of cooperation, this paper puts forward four kinds of cooperative changeover strategies. This paper also describes the cooperative line-changing behavior of operators. Finally, based on the changeover strategies, the proposed simulation method is applied to a production cell. Four production scenarios are considered according to the proportion of newly introduced part. The performance of various cooperative strategies in different production scenarios is simulated, and the statistical test results show that the optimal or satisfactory strategy can be determined in each production scenario. Additionally, the effectiveness and practicability of the proposed modeling method are verified.

2018 ◽  
Author(s):  
Reinhard Koenig

This work is based on the concept that the structure of a city can be defined by six basic urban patterns. To enable more complex urban planning as a long-term objective I have developed a simulation method for generating these basic patterns and for combining them to form various structures. The generative process starts with the two-dimensional organisation of streets followed by the parceling of the remaining areas. An agent-based diffusion-contact model is the basis of these first two steps. Then, with the help of cellular automata, the sites for building on are defined and a three-dimensional building structure is derived. I illustrate the proposed method by showing how it can be applied to generate possible structures for an urban area in the city of Munich.


Author(s):  
Kemas M. Lhaksmana ◽  
Yohei Murakami ◽  
Toru Ishida

Self-organization has been proposed to be implemented in complex systems which require the automation capabilities to govern itself and to adapt upon changes. Self-organizing systems can be modeled as multi-agent systems (MAS) since they share common characteristics in that they consist of multiple autonomous systems. However, most existing MAS engineering methodologies do not fully support self-organizing systems design since they require predefined goals and agent behaviors, which is not the case in self-organizing systems. Another feature that is currently not supported for designing self-organizing MAS is the separation between the design of agent behaviors and behavior adaptation, i.e. how agents adapt their behaviors to respond upon changes. To tackle these issues, this paper proposes a role modeling method, in which agent behaviors are represented as roles, to design how agents perform behavior adaptation at runtime by switching between roles. The applicability of the proposed role modeling method is evaluated in a case study of a self-organizing smart transportation system.


Sign in / Sign up

Export Citation Format

Share Document