scholarly journals I3D-Shufflenet Based Human Action Recognition

Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 301
Author(s):  
Guocheng Liu ◽  
Caixia Zhang ◽  
Qingyang Xu ◽  
Ruoshi Cheng ◽  
Yong Song ◽  
...  

In view of difficulty in application of optical flow based human action recognition due to large amount of calculation, a human action recognition algorithm I3D-shufflenet model is proposed combining the advantages of I3D neural network and lightweight model shufflenet. The 5 × 5 convolution kernel of I3D is replaced by a double 3 × 3 convolution kernels, which reduces the amount of calculations. The shuffle layer is adopted to achieve feature exchange. The recognition and classification of human action is performed based on trained I3D-shufflenet model. The experimental results show that the shuffle layer improves the composition of features in each channel which can promote the utilization of useful information. The Histogram of Oriented Gradients (HOG) spatial-temporal features of the object are extracted for training, which can significantly improve the ability of human action expression and reduce the calculation of feature extraction. The I3D-shufflenet is testified on the UCF101 dataset, and compared with other models. The final result shows that the I3D-shufflenet has higher accuracy than the original I3D with an accuracy of 96.4%.

2020 ◽  
Vol 57 (24) ◽  
pp. 241506
Author(s):  
郭如意 Guo Ruyi ◽  
金杰 Jin Jie ◽  
刘高华 Liu Gaohua ◽  
刘凯燕 Liu Kaiyan ◽  
姜诗祺 Jiang Shiqi

2011 ◽  
Vol 186 ◽  
pp. 261-265
Author(s):  
He Jin Yuan ◽  
Cui Ru Wang

A novel human action recognition algorithm based on edit distance is proposed in this paper. In the method, the mesh feature of each image in human action sequence is firstly calculated; then the feature vectors are quantized through a rival penalized competitive neural network; and through this processing, the time-sequential image sequences are converted into symbolic sequences. For human action recognition, the observed action is firstly vector quantized with the former competitive neural network; then the normalized edit distances to the training samples are calculated and the action which best matches the observed sequence is chosen as the final category. The experiments on Weizmann dataset demonstrate that our method is effective for human action recognition. The average recognition accuracy can reach above 94%.


2013 ◽  
Vol 18 (2-3) ◽  
pp. 49-60 ◽  
Author(s):  
Damian Dudzńiski ◽  
Tomasz Kryjak ◽  
Zbigniew Mikrut

Abstract In this paper a human action recognition algorithm, which uses background generation with shadow elimination, silhouette description based on simple geometrical features and a finite state machine for recognizing particular actions is described. The performed tests indicate that this approach obtains a 81 % correct recognition rate allowing real-time image processing of a 360 X 288 video stream.


Data ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 104
Author(s):  
Ashok Sarabu ◽  
Ajit Kumar Santra

The Two-stream convolution neural network (CNN) has proven a great success in action recognition in videos. The main idea is to train the two CNNs in order to learn spatial and temporal features separately, and two scores are combined to obtain final scores. In the literature, we observed that most of the methods use similar CNNs for two streams. In this paper, we design a two-stream CNN architecture with different CNNs for the two streams to learn spatial and temporal features. Temporal Segment Networks (TSN) is applied in order to retrieve long-range temporal features, and to differentiate the similar type of sub-action in videos. Data augmentation techniques are employed to prevent over-fitting. Advanced cross-modal pre-training is discussed and introduced to the proposed architecture in order to enhance the accuracy of action recognition. The proposed two-stream model is evaluated on two challenging action recognition datasets: HMDB-51 and UCF-101. The findings of the proposed architecture shows the significant performance increase and it outperforms the existing methods.


Sign in / Sign up

Export Citation Format

Share Document