scholarly journals Damage Identification of Long-Span Bridges Using the Hybrid of Convolutional Neural Network and Long Short-Term Memory Network

Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 180
Author(s):  
Lei Fu ◽  
Qizhi Tang ◽  
Peng Gao ◽  
Jingzhou Xin ◽  
Jianting Zhou

The shallow features extracted by the traditional artificial intelligence algorithm-based damage identification methods pose low sensitivity and ignore the timing characteristics of vibration signals. Thus, this study uses the high-dimensional feature extraction advantages of convolutional neural networks (CNNs) and the time series modeling capability of long short-term memory networks (LSTM) to identify damage to long-span bridges. Firstly, the features extracted by CNN and LSTM are fused as the input of the fully connected layer to train the CNN-LSTM model. After that, the trained CNN-LSTM model is employed for damage identification. Finally, a numerical example of a large-span suspension bridge was carried out to investigate the effectiveness of the proposed method. Furthermore, the performance of CNN-LSTM and CNN under different noise levels was compared to test the feasibility of application in practical engineering. The results demonstrate the following: (1) the combination of CNN and LSTM is satisfactory with 94% of the damage localization accuracy and only 8.0% of the average relative identification error (ARIE) of damage severity identification; (2) in comparison to the CNN, the CNN-LSTM results in superior identification accuracy; the damage localization accuracy is improved by 8.13%, while the decrement of ARIE of damage severity identification is 5.20%; and (3) the proposed method is capable of resisting the influence of environmental noise and acquires an acceptable recognition effect for multi-location damage; in a database with a lower signal-to-noise ratio of 3.33, the damage localization accuracy of the CNN-LSTM model is 67.06%, and the ARIE of the damage severity identification is 31%. This work provides an innovative idea for damage identification of long-span bridges and is conducive to promote follow-up studies regarding structural condition evaluation.

2021 ◽  
Author(s):  
Sandeep Sony

In this paper, a novel method is proposed for detecting and localizing structural damage by classifying acceleration responses of a structure using a long short-term memory (LSTM) network. Windows of samples are extracted from acceleration responses in a novel data pre-processing pipeline, and an LSTM network is developed to classify the signals into multiple classes. A predicted classification of a signal by the LSTM network into one of the damage levels indicates a damage detection. Furthermore, multiple signals obtained from the vibration sensors placed on a structure are provided as input to the LSTM model, and the resulting predicted class probabilities are used to identify the locations with high probability of damage. The proposed method is validated on the experimental setup of the Qatar University Grandstand Simulator (QUGS) for binary classification, as well as, full-scale study of the Z24 bridge benchmark data for multi-class damage classification. Experiments show that the proposed LSTM-based method performs on par with 1D convolutional neural networks (1D CNN) on the QUGS dataset, and outperforms the 1D CNN on the Z24 dataset. The novelty of this study lies in the use of recurrent neural network based LSTM for vibration data for multi-class damage identification and localization.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6614
Author(s):  
Yangde Gao ◽  
Cheol Hong Kim ◽  
Jong-Myon Kim

Deep learning (DL) plays a very important role in the fault diagnosis of rotating machinery. To enhance the self-learning capacity and improve the intelligent diagnosis accuracy of DL for rotating machinery, a novel hybrid deep learning method (NHDLM) based on Extended Deep Convolutional Neural Networks with Wide First-layer Kernels (EWDCNN) and long short-term memory (LSTM) is proposed for complex environments. First, the EWDCNN method is presented by extending the convolution layer of WDCNN, which can further improve automatic feature extraction. The LSTM then changes the geometric architecture of the EWDCNN to produce a novel hybrid method (NHDLM), which further improves the performance for feature classification. Compared with CNN, WDCNN, and EWDCNN, the proposed NHDLM method has the greatest performance and identification accuracy for the fault diagnosis of rotating machinery.


2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

Sign in / Sign up

Export Citation Format

Share Document