scholarly journals A Pathfinding Problem for Fork-Join Directed Acyclic Graphs with Unknown Edge Length

Algorithms ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 367
Author(s):  
Kunihiko Hiraishi

In a previous paper by the author, a pathfinding problem for directed trees is studied under the following situation: each edge has a nonnegative integer length, but the length is unknown in advance and should be found by a procedure whose computational cost becomes exponentially larger as the length increases. In this paper, the same problem is studied for a more general class of graphs called fork-join directed acyclic graphs. The problem for the new class of graphs contains the previous one. In addition, the optimality criterion used in this paper is stronger than that in the previous paper and is more appropriate for real applications.

Author(s):  
Topi Talvitie ◽  
Mikko Koivisto

Exploring directed acyclic graphs (DAGs) in a Markov equivalence class is pivotal to infer causal effects or to discover the causal DAG via appropriate interventional data. We consider counting and uniform sampling of DAGs that are Markov equivalent to a given DAG. These problems efficiently reduce to counting the moral acyclic orientations of a given undirected connected chordal graph on n vertices, for which we give two algorithms. Our first algorithm requires O(2nn4) arithmetic operations, improving a previous superexponential upper bound. The second requires O(k!2kk2n) operations, where k is the size of the largest clique in the graph; for bounded-degree graphs this bound is linear in n. After a single run, both algorithms enable uniform sampling from the equivalence class at a computational cost linear in the graph size. Empirical results indicate that our algorithms are superior to previously presented algorithms over a range of inputs; graphs with hundreds of vertices and thousands of edges are processed in a second on a desktop computer.


2019 ◽  
Vol 91 ◽  
pp. 78-87 ◽  
Author(s):  
Anna E. Austin ◽  
Tania A. Desrosiers ◽  
Meghan E. Shanahan

Author(s):  
Endre Csóka ◽  
Łukasz Grabowski

Abstract We introduce and study analogues of expander and hyperfinite graph sequences in the context of directed acyclic graphs, which we call ‘extender’ and ‘hypershallow’ graph sequences, respectively. Our main result is a probabilistic construction of non-hypershallow graph sequences.


2002 ◽  
Vol 13 (06) ◽  
pp. 873-887
Author(s):  
NADIA NEDJAH ◽  
LUIZA DE MACEDO MOURELLE

We compile pattern matching for overlapping patterns in term rewriting systems into a minimal, tree matching automata. The use of directed acyclic graphs that shares all the isomorphic subautomata allows us to reduce space requirements. These are duplicated in the tree automaton. We design an efficient method to identify such subautomata and avoid duplicating their construction while generating the dag automaton. We compute some bounds on the size of the automata, thereby improving on previously known equivalent bounds for the tree automaton.


Sign in / Sign up

Export Citation Format

Share Document