scholarly journals Fault-Tolerant Control of a Three-Phase Permanent Magnet Synchronous Motor for Lightweight UAV Propellers via Central Point Drive

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 253
Author(s):  
Aleksander Suti ◽  
Gianpietro Di Rito ◽  
Roberto Galatolo

This paper deals with the development and the performance characterization of a novel Fault-Tolerant Control (FTC) aiming to the diagnosis and accommodation of electrical faults in a three-phase Permanent Magnet Synchronous Motor (PMSM) employed for the propulsion of a modern lightweight fixed-wing UAV. To implement the fault-tolerant capabilities, a four-leg inverter is used to drive the reference PMSM, so that a system reconfiguration can be applied in case of a motor phase fault or an inverter fault, by enabling the control of the central point of the three-phase connection. A crucial design point is to develop Fault-Detection and Isolation (FDI) algorithms capable of minimizing the system failure transients, which are typically characterized by high-amplitude high-frequency torque ripples. The proposed FTC is composed of two sections: in the first, a deterministic model-based FDI algorithm is used, based the evaluation of the current phasor trajectory in the Clarke’s plane; in the second, a novel technique for fault accommodation is implemented by applying a reference frame transformation to post-fault commands. The FTC effectiveness is assessed via detailed nonlinear simulation (including sensors errors, digital signal processing, mechanical transmission compliance, propeller loads and electrical faults model), by characterizing the FDI latency and the post-fault system performances when open circuit faults are injected. Compared with reports in the literature, the proposed FTC demonstrates relevant potentialities: the FDI section of the algorithm provides the smallest ratio between latency and monitoring samples per electrical period, while the accommodation section succeeds in both eliminating post-fault torque ripples and maintaining the mechanical power output with negligible efficiency degradation.

2021 ◽  
Vol 2083 (2) ◽  
pp. 022073
Author(s):  
Yuan Cao ◽  
Fuzhi Jing ◽  
Heng Wan

Abstract Permanent Magnet Synchronous Motor (Permanent Magnet Synchronous Motor, hereinafter referred to as PMSM) has the characteristics of small size, high efficiency, high power density and fast dynamic response, etc., and more and more applications in the transportation industry. This also has higher and higher requirements for the reliability and security of PMSM drivers. In this paper, the fault tolerant control strategy of PMSM based on three phase four switch inverter is proposed based on vector control and the simulation verification is carried out.


Sign in / Sign up

Export Citation Format

Share Document