scholarly journals Extracellular Redox Regulation of α7β Integrin-Mediated Cell Migration Is Signaled via a Dominant Thiol-Switch

Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 227 ◽  
Author(s):  
Lukas Bergerhausen ◽  
Julius Grosche ◽  
Juliane Meißner ◽  
Christina Hecker ◽  
Michele F. Caliandro ◽  
...  

While adhering to extracellular matrix (ECM) proteins, such as laminin-111, cells temporarily produce hydrogen peroxide at adhesion sites. To study the redox regulation of α7β1 integrin-mediated cell adhesion to laminin-111, a conserved cysteine pair within the α-subunit hinge region was replaced for alanines. The molecular and cellular effects were analyzed by electron and atomic force microscopy, impedance-based migration assays, flow cytometry and live cell imaging. This cysteine pair constitutes a thiol-switch, which redox-dependently governs the equilibrium between an extended and a bent integrin conformation with high and low ligand binding activity, respectively. Hydrogen peroxide oxidizes the cysteines to a disulfide bond, increases ligand binding and promotes cell migration toward laminin-111. Inversely, extracellular thioredoxin-1 reduces the disulfide, thereby decreasing laminin binding. Mutation of this cysteine pair into the non-oxidizable hinge-mutant shows molecular and cellular effects similar to the reduced wild-type integrin, but lacks redox regulation. This proves the existence of a dominant thiol-switch within the α subunit hinge of α7β1 integrin, which is sufficient to implement activity regulation by extracellular redox agents in a redox-regulatory circuit. Our data reveal a novel and physiologically relevant thiol-based regulatory mechanism of integrin-mediated cell-ECM interactions, which employs short-lived hydrogen peroxide and extracellular thioredoxin-1 as signaling mediators.

2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


1996 ◽  
Vol 271 (41) ◽  
pp. 25617-25623 ◽  
Author(s):  
Mark E. Martin ◽  
Yurii Chinenov ◽  
Mi Yu ◽  
Tonya K. Schmidt ◽  
Xiu-Ying Yang

2020 ◽  
Vol 31 (3) ◽  
pp. 642-653.e6 ◽  
Author(s):  
Valeriy V. Pak ◽  
Daria Ezeriņa ◽  
Olga G. Lyublinskaya ◽  
Brandán Pedre ◽  
Pyotr A. Tyurin-Kuzmin ◽  
...  

2004 ◽  
Vol 378 (3) ◽  
pp. 833-838 ◽  
Author(s):  
Tae-Yeong CHOI ◽  
S. Young PARK ◽  
Ho-Sung KANG ◽  
Jae-Hun CHEONG ◽  
Han-Do KIM ◽  
...  

DREF [DRE (DNA replication-related element) binding factor] is an 80 kDa polypeptide homodimer which plays an important role in regulating cell proliferation-related genes. Both DNA binding and dimer formation activities are associated with residues 16–115 of the N-terminal region. However, the mechanisms by which DREF dimerization and DNA binding are regulated remain unknown. Here, we report that the DNA binding activity of DREF is regulated by a redox mechanism, and that the cysteine residues are involved in this regulation. Electrophoretic mobility shift analysis using Drosophila Kc cell extracts or recombinant DREF proteins indicated that the DNA binding domain is sufficient for redox regulation. Site-directed mutagenesis and transient transfection assays showed that Cys59 and/or Cys62 are critical both for DNA binding and for redox regulation, whereas Cys91 is dispensable. In addition, experiments using Kc cells indicated that the DNA binding activity and function of DREF are affected by the intracellular redox state. These findings give insight into the exact nature of DREF function in the regulation of target genes by the intracellular redox state.


2005 ◽  
Vol 18 (4) ◽  
pp. 295-306 ◽  
Author(s):  
Yasuhiro Nishiyama ◽  
Yukie Mitsuda ◽  
Hiroaki Taguchi ◽  
Stephanie Planque ◽  
Mariko Hara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document