scholarly journals Voting-Based Document Image Skew Detection

2020 ◽  
Vol 10 (7) ◽  
pp. 2236
Author(s):  
Costin-Anton Boiangiu ◽  
Ovidiu-Alexandru Dinu ◽  
Cornel Popescu ◽  
Nicolae Constantin ◽  
Cătălin Petrescu

Optical Character Recognition (OCR) is an indispensable tool for technology users nowadays, as our natural language is presented through text. We live under the need of having information at hand in every circumstance and, at the same time, having machines understand visual content and thus enable the user to be able to search through large quantities of text. To detect textual information and page layout in an image page, the latter must be properly oriented. This is the problem of the so-called document deskew, i.e., finding the skew angle and rotating by its opposite. This paper presents an original approach which combines various algorithms that solve the skew detection problem, with the purpose of always having at least one to compensate for the others’ shortcomings, so that any type of input document can be processed with good precision and solid confidence in the output result. The tests performed proved that the proposed solution is very robust and accurate, thus being suitable for large scale digitization projects.

Author(s):  
Neha. N

Document image processing is an increasingly important technology essential in all optical character recognition (OCR) systems and for automation of various office documents. A document originally has zero-skew (tilt), but when a page is scanned or photo copied, skew may be introduced due to various factors and is practically unavoidable. Presence even a small amount of skew (0.50) will have detrimental effects on document analysis as it has a direct effect on the reliability and efficiency of segmentation, recognition and feature extraction stages. Therefore removal of skew is of paramount importance in the field of document analysis and OCR and is the first step to be accomplished. This paper presents a novel technique for skew detection and correction which is both language and content independent. The proposed technique is based on the maximum density of the foreground pixels and their orientation in the document image. Unlike other conventional algorithms which work only for machine printed textual documents scripted in English, this technique works well for all kinds of document images (machine printed, hand written, complex, noisy and simple). The technique presented here is tested with 150 different document image samples and is found to provide results with an accuracy of 0.10


Author(s):  
M. Ramanan

Skew detection and correction of a scanned document is a very important step in Optical Character Recognition because skew of scanned document is reducing the accuracy of text line approach for skew detection and correction to calculate the skew angle on multi-script scanned document using Radon transform, Hough transform, Harries corner, Wiener filter and smearing algorithm. In this paper, a proposed approach is compared existing skew detection and correction techniques for printed documents having different scripts: English, Tamil, Sinhala and mixed-script. A proposed hybrid method is tested on 160 documents. The overall testing results is 90.62% for skew detection and correction.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 198
Author(s):  
Ronny Susanto ◽  
Farica P. Putri ◽  
Y. Widya Wiratama

The accuracy of Optical Character Recognition is deeply affected by the skew of the image.  Skew detection & correction is one of the steps in OCR preprocessing to detect and correct the skew of document image. This research measures the effect of Combined Vertical Projection skew detection method to the accuracy of OCR. Accuracy of OCR is measured in Character Error Rate, Word Error Rate, and Word Error Rate (Order Independent). This research also measures the computational time needed in Combined Vertical Projection with different iteration. The experiment of Combined Vertical Projection is conducted by using iteration 0.5, 1, and 2 with rotation angle within -10 until 10 degrees. The experiment results show that the use of Combined Vertical Projection could lower the Character Error Rate, Word Error Rate, and Word Error Rate (Order Independent) up to 35.53, 34.51, and 32.74 percent, respectively. Using higher iteration value could lower the computational time but also decrease the accuracy of OCR.   


Author(s):  
Li Cheng ◽  
Gongping Wu

Optical character recognition is an effective way for information input of paper media and skew detection of document images is a key stage of it. An algorithm for skew detection employing hierarchical projection is proposed in this paper. Projection histograms at various directions in a given range are acquired according to an initial angle step length. Then variances of it and absolute difference of the variances are calculated respectively and the angle corresponding to the maximum difference is served as rough skew estimate. The similar work above is implemented in which the projection angle range is two times the initial step length and symmetric about the estimate. Finally, the maximum value of the variances is found and the angle corresponding to it is served as skew angle. Experimental results show the algorithm has such advantages as fast processing speed, high detection accuracy, insensitivity to noise and suitable for complex layout.


2015 ◽  
Vol 4 (2) ◽  
pp. 74-94
Author(s):  
Pawan Kumar Singh ◽  
Ram Sarkar ◽  
Mita Nasipuri

Script identification is an appealing research interest in the field of document image analysis during the last few decades. The accurate recognition of the script is paramount to many post-processing steps such as automated document sorting, machine translation and searching of text written in a particular script in multilingual environment. For automatic processing of such documents through Optical Character Recognition (OCR) software, it is necessary to identify different script words of the documents before feeding them to the OCR of individual scripts. In this paper, a robust word-level handwritten script identification technique has been proposed using texture based features to identify the words written in any of the seven popular scripts namely, Bangla, Devanagari, Gurumukhi, Malayalam, Oriya, Telugu, and Roman. The texture based features comprise of a combination of Histograms of Oriented Gradients (HOG) and Moment invariants. The technique has been tested on 7000 handwritten text words in which each script contributes 1000 words. Based on the identification accuracies and statistical significance testing of seven well-known classifiers, Multi-Layer Perceptron (MLP) has been chosen as the final classifier which is then tested comprehensively using different folds and with different epoch sizes. The overall accuracy of the system is found to be 94.7% using 5-fold cross validation scheme, which is quite impressive considering the complexities and shape variations of the said scripts. This is an extended version of the paper described in (Singh et al., 2014).


Author(s):  
Jane Courtney

For Visually impaired People (VIPs), the ability to convert text to sound can mean a new level of independence or the simple joy of a good book. With significant advances in Optical Character Recognition (OCR) in recent years, a number of reading aids are appearing on the market. These reading aids convert images captured by a camera to text which can then be read aloud. However, all of these reading aids suffer from a key issue – the user must be able to visually target the text and capture an image of sufficient quality for the OCR algorithm to function – no small task for VIPs. In this work, a Sound-Emitting Document Image Quality Assessment metric (SEDIQA) is proposed which allows the user to hear the quality of the text image and automatically captures the best image for OCR accuracy. This work also includes testing of OCR performance against image degradations, to identify the most significant contributors to accuracy reduction. The proposed No-Reference Image Quality Assessor (NR-IQA) is validated alongside established NR-IQAs and this work includes insights into the performance of these NR-IQAs on document images.


2019 ◽  
Vol 9 (21) ◽  
pp. 4529
Author(s):  
Tao Liu ◽  
Hao Liu ◽  
Yingying Wu ◽  
Bo Yin ◽  
Zhiqiang Wei

Capturing document images using digital cameras in uneven lighting conditions is challenging, leading to poorly captured images, which hinders the processing that follows, such as Optical Character Recognition (OCR). In this paper, we propose the use of exposure bracketing techniques to solve this problem. Instead of capturing one image, we used several images that were captured with different exposure settings and used the exposure bracketing technique to generate a high-quality image that incorporates useful information from each image. We found that this technique can enhance image quality and provides an effective way of improving OCR accuracy. Our contributions in this paper are two-fold: (1) a preprocessing chain that uses exposure bracketing techniques for document images is discussed, and an automatic registration method is proposed to find the geometric disparity between multiple document images, which lays the foundation for exposure bracketing; (2) several representative exposure bracketing algorithms are incorporated in the processing chain and their performances are evaluated and compared.


Sign in / Sign up

Export Citation Format

Share Document