scholarly journals Hg2+ Optical Fiber Sensor Based on LSPR with PDDA-Templated AuNPs and CS/PAA Bilayers

2020 ◽  
Vol 10 (14) ◽  
pp. 4845
Author(s):  
Xiujuan Zhong ◽  
Li Ma ◽  
Guolu Yin ◽  
Mengyu Gan ◽  
Yong Wei

An optical fiber localized surface plasmon resonance (LSPR) sensor was proposed and experimentally demonstrated to detect Hg2+ ions by functionalizing the optical fiber surface with gold nanoparticles (AuNPs) and chitosan (CS)/poly acrylic acid (PAA) bilayers. A flame-brushing technology was proposed to post-process the polydimethyl diallyl ammonium chloride(PDDA)-templated nanoparticles, avoiding the aggregation of AuNPs and achieving well-dispersed AuNPs arrays. LSPR stimulated by the AuNPs is sensitive to changes in the refractive index induced by Hg2+ ions absorption on the CS/PAA bilayers. Experimental results demonstrated that the LSPR peak wavelength linearly shifts with the concentrations of Hg2+ ions from 1 to 30 μM with a sensitivity of around 0.51 nm/ppm. The sensor also exhibits good specificity and longtime stability.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeong-Min Kim ◽  
Dae Hong Jeong ◽  
Ho-Young Lee ◽  
Jae-Hyoung Park ◽  
Seung-Ki Lee

AbstractA simple optical fiber sensor based on localized surface plasmon resonance was constructed for direct and rapid measurement of thyroglobulin (Tg). Specific tests for Tg in patients that have undergone thyroidectomy are limited because of insufficient sensitivity, complicated procedures, and in some cases, a long time to yield a result. A sensitive, fast, and simple method is necessary to relieve the psychological and physical burden of the patient. Various concentrations of Tg were measured in a microfluidic channel using an optical fiber sensor with gold nanoparticles. The sensor chip has a detection limit of 93.11 fg/mL with no specificity for other antigens. The potential applicability of the Tg sensing system was evaluated using arbitrary samples containing specific concentrations of Tg. Finally, the sensor can be employed to detect Tg in the patient’s serum, with a good correlation when compared with the commercial kit.


Sensors ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 18701-18710 ◽  
Author(s):  
J. Ortega-Mendoza ◽  
Alfonso Padilla-Vivanco ◽  
Carina Toxqui-Quitl ◽  
Placido Zaca-Morán ◽  
David Villegas-Hernández ◽  
...  

2019 ◽  
Vol 10 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Yiwen Tang ◽  
Hui Yuan ◽  
Jiangping Chen ◽  
Qiguo Xing ◽  
Rongxin Su ◽  
...  

Abstract We present a facile and effective method for fabrication of the localized surface plasmon resonance (LSPR) optical fiber sensor assisted by two polydopamine (PDA) layers with enhanced plasmonic sensing performance. The first PDA layer was self-polymerized onto the bare optical fiber to provide the catechol groups for the reduction from Ag+ to Ago through chelating and redox activity. As the reduction of Ag+ proceeds, Ag nanoparticles (NPs) were grown in-situ on the PDA layer with uniform distribution. The second PDA layer was applied to prevent Ag NPs from oxidating and achieve an improvement of LSPR signal. The PDA/Ag/PDA-based optical fiber sensor has an enhanced LSPR sensitivity of 961 nm/RIU and excellent oxidation resistance. The stable PDA/Ag/PDA-based LSPR sensor with high optical performance is very promising for future application in optical sensing field.


2021 ◽  
Vol 5 (1) ◽  
pp. 73
Author(s):  
María Elena Martínez-Hernández ◽  
Xabier Sandua ◽  
Pedro J. Rivero ◽  
Javier Goicoechea ◽  
Francisco J. Arregui

In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon is presented as a powerful tool for the detection of heavy metals (Hg2+). The resultant sensing film was fabricated using a nanofabrication process, known as layer-by-layer embedding (LbL-E) deposition technique. In this sense, both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using a synthetic chemical protocol as a function of a strict control of three main parameters: polyelectrolyte concentration, loading agent, and reducing agent. The use of metallic nanostructures as sensing materials is of great interest because well-located absorption peaks associated with their LSPR are obtained at 420 nm (AgNPs) and 530 nm (AuNPs). Both plasmonic peaks provide a stable real-time reference that can be extracted from the spectral response of the optical fiber sensor, giving a reliable monitoring of the Hg2+ concentration.


Sign in / Sign up

Export Citation Format

Share Document