scholarly journals Application of the Incremental Modal Pushover Analysis to Bridges Subjected to Near-Fault Ground Motions

2020 ◽  
Vol 10 (19) ◽  
pp. 6738
Author(s):  
Alessandro Vittorio Bergami ◽  
Gabriele Fiorentino ◽  
Davide Lavorato ◽  
Bruno Briseghella ◽  
Camillo Nuti

Near-fault events can cause severe damage to civil structures, including bridges. Many studies have demonstrated that the seismic assessment is not straightforward. Usually, dealing with near-fault ground motion, the structural analysis is performed using Nonlinear Response-History Analysis (NRHA) but in the last years, many authors have tested existing pushover-based procedures originally developed and validated using far-field events. Between those procedures, the Incremental Modal Pushover Analysis (IMPAβ) is a pushover-based procedure specifically developed for bridges that, in this work, was applied to a case study considering near-fault pulse-like ground motion records. The records were analyzed and selected from the European Strong Motion Database. In the paper the results obtained with IMPAβ together with other standard pushover procedures, are compared with NRHA and incremental dynamic analyses; the vertical component of the motion has been also considered. Results obtained with the bridge case study demonstrate that the vertical seismic action has a minor influence on the structural response and that IMPAβ is confirmed as a very effective pushover-based method that can be applied also for near-fault events.

Author(s):  
Alessandro Vittorio Bergami ◽  
Gabriele Fiorentino ◽  
Davide Lavorato ◽  
Bruno Briseghella ◽  
Camillo Nuti

Near-fault ground motions can cause severe damage to civil structures, including bridges. Safety assessment of these structures for near fault ground motion is usually performed through Non-Linear Dynamic Analyses, while faster methods are often used. IMPAb (Incremental Modal Pushover Analysis for Bridges) permits to investigate the seismic response of a bridge by considering the effects of higher modes, which are often relevant for bridges. In this work, IMPAb is applied to a bridge case study considering near-fault pulse-like ground motion records. The records were analyzed and selected from the European Strong Motion Database and the pulse parameters were evaluated. In the paper results from standard pushover procedures and IMPAb are compared with nonlinear Response-History Analysis (NRHA), considering also the vertical component of the motion, as benchmark solutions and incremental dynamic analysis (IDA). Results from the case study demonstrate that the vertical seismic action has a minor influence on the structural response of the bridge. Therefore IMPAb, which can be applied considering vertical motion, remains very effective conserving the original formulation of the procedure, and can be considered a well performing procedure also for near-fault events.


2020 ◽  
Vol 10 (12) ◽  
pp. 4287 ◽  
Author(s):  
Alessandro Vittorio Bergami ◽  
Camillo Nuti ◽  
Davide Lavorato ◽  
Gabriele Fiorentino ◽  
Bruno Briseghella

In the present study, the incremental modal pushover analysis (IMPA), a pushover-based approach already proposed and applied to buildings by the same authors, was revised and proposed for bridges (IMPAβ). Pushover analysis considers the effects of higher modes on the structural response. Bridges are structurally very different from multi-story buildings, where multimodal pushover (MPA) has been developed and is currently used. In bridges, consideration for higher modes is often necessary: The responses of some structural elements of the bridge (e.g., piers) influence the overall bridge response. Therefore, the failure of these elements can determine the failure of the whole structure, even if they give a small contribution total base shear. Incremental dynamic analysis (IDA) requires input accelerograms for high intensities, which are rare in the databases, while scaling of generated accelerograms with a simple increment of the scaling acceleration is not appropriate. This fact renders IDA, which is by its nature time-consuming, not straightforward. On the contrary, the change of input spectrum required by IMPA is simple. IMPAβ also utilizes a simple complementary method coupled to MPA, to obtain bounds at very high seismic intensities. Finally, the two incremental methods based on static nonlinear and dynamic nonlinear analyses are compared.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Feng Wang ◽  
Jian-Gang Sun ◽  
Ning Zhang

Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1) the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2) Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3) Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Luis A. Pinzón ◽  
Luis G. Pujades ◽  
Irving Medranda ◽  
Rodrigo E. Alva

In this work, the directionality effects during the MW 7.8 earthquake, which occurred in Muisne (Ecuador) on 16 April 2016, were analyzed under two perspectives. The first one deals with the influence of these effects on seismic intensity measures (IMs), while the second refers to the assessment of the expected damage of a specific building located in Manta city, Ecuador, as a function of its azimuthal orientation. The records of strong motion in 21 accelerometric stations were used to analyze directionality in seismic actions. At the closest station to the epicenter (RRup = 20 km), the peak ground acceleration was 1380 cm/s2 (EW component of the APED station). A detailed study of the response spectra ratifies the importance of directionality and confirms the need to consider these effects in seismic hazard studies. Differences between IMs values that consider the directionality and those obtained from the as-recorded accelerograms are significant and they agree with studies carried out in other regions. Concerning the variation of the expected damage with respect to the building orientation, a reinforced concrete building, which was seriously affected by the earthquake, was taken as a case study. For this analysis, the accelerograms recorded at a nearby station and detailed structural documentation were used. The ETABS software was used for the structural analysis. Modal and pushover analyses were performed, obtaining capacity curves and capacity spectra in the two main axes of the building. Two advanced methods for damage assessment were used to obtain fragility and mean damage state curves. The performance points were obtained through the linear equivalent approximation. This allows estimation and analysis of the expected mean damage state and the probability of complete damage as functions of the building orientation. Results show that the actual probability of complete damage is close to 60%. This fact is mainly due to the greater severity of the seismic action in one of the two main axes of the building. The results are in accordance with the damage produced by the earthquake in the building and confirm the need to consider the directionality effects in damage and seismic risk assessments.


2011 ◽  
Vol 255-260 ◽  
pp. 806-810
Author(s):  
Biao Wei ◽  
Qing Yuan Zeng ◽  
Wei An Liu

Taking one irregular continuous bridge as an example, modal pushover analysis (MPA) has been conducted to judge whether it would be applicable for seismic analysis of irregular bridge structures. The bridge’s seismic demand in the transverse direction has been determined through two different methods, inelastic time history analysis (ITHA) and MPA respectively. The comparison between those two results indicates that MPA would be suitable only for bridges under elastic or slightly damaged state. Finally, some modifications are used to improve the MPA’s scope of application, and the results illustrate that the adapted MPA will be able to estimate bridges’ seismic demands to some extent.


Sign in / Sign up

Export Citation Format

Share Document