skewed bridges
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Amr Ghanem ◽  
Do-Soo Moon ◽  
Young Joo Lee

Skewed bridges are commonly used in highway interchanges where the straight (unskewed) bridges are not suitable. There have been several observations of heavy damage of bridges that have geometric irregularities, especially significant skewness. Such damage severely disrupts transportation systems, leading to substantial economic consequences. Skewed bridges are often inevitable due to the complexity and lack of orthogonality of transportation networks; hence better quantification of the effects of skewness on the bridge performance is a more viable approach than avoiding skewed bridges. This research focuses on the seismic vulnerability analysis of skewed reinforced concrete (RC) bridges. From the straight to highly skewed, various bridge models are created based on design example No. 4 prepared by the US Federal Highway Administration (FHWA). A set of earthquake ground motion records is carefully selected to impose consistent seismic demands on bridges. The fragility relationships for all bridge configurations are derived from the non-linear dynamic response history analysis. A new structural reliability method is utilized to handle the computational challenge in deriving fragility curves, which incorporates the structural analysis and reliability analysis to calculate the failure probability efficiently and accurately with the first-order reliability method (FORM). An attempt is made to parameterize the problem based on the skew angle. It is shown that the skew angle has a direct effect on the seismic vulnerability of RC bridges. The results reported will be helpful for new designs of skew RC bridges.


Author(s):  
Ms. Ashwini Hanchate

Abstract: The present paper shows the effects of varying skew angles on pre-stressed concrete (PSC) bridges using finite elemental method. Studies are carried out on PSC bridge decks to understand the influence of skew angle and loading on behaviour of bridges. The results of skewed bridges are compared with straight bridges for IRC Class AA Tracked loading. Also, a comparative analysis of the response of skewed PSC Slab Bridge decks with that of equivalent straight bridge decks is made. The variation of maximum longitudinal bending moment (BM), maximum transverse moment, maximum torsional moment, and maximum longitudinal stresses deflection at obtuse corner, acute corner with skew angles are studied for bridge deck. It is found that Live load longitudinal bending moments decreases with an increase in skew angle, whereas a maximum transverse moment and maximum torsional moment increases with an increase in skew angle. The benefit of pre-stressing is reflected in considerable decrease in the longitudinal bending moment, transverse moment and longitudinal stresses. The models are analysed with the help of software CSI-Bridge V 20 Version. Keywords: Skew angle effect, Longitudinal moment, Transverse moment, CSI- Bridge software, Deck slab, Finite element method.


Author(s):  
Ziqi Yang ◽  
Chern Kun ◽  
Dongliang Meng ◽  
Nawawi Chouw

Previous research has shown that the transient and partial footing separation is one of the effective methods to reduce the impact of earthquakes on bridge structures. The separation will not only temporarily stop the transfer of seismic load to structures, but also activate rigid-like body motions of the bridge piers. Most of current investigations involving footing uplift only focused on straight bridges. The influence of skew angle is rarely considered. Even though skewed bridges are common and more vulnerable to seismic load. This work reveals the simultaneous influence of skew angle and footing uplift on soil on seismic response of bridges. A bridge with a 30∘ or 45∘ skew angle, in addition to a straight bridge, was excited using a large-scale shake table. The ground excitations were stochastically simulated based on design spectrum of New Zealand standard. The result revealed that with increasing skew angle bridges will have frequent footing uplifts. In the case of a straight bridge, although allowing footing uplift is beneficial in reducing the bending moment at the pier support, it increases the longitudinal girder displacement. In contrast, in the case of 30∘ and 45∘ skewed bridges, uplifts increase the bending moments of piers and the displacements of the girder, especially in the transverse direction.


2020 ◽  
Author(s):  
Robert J. Connor ◽  
Cem Korkmaz

In current bridge design specifications and evaluation manuals from the American Association of State Highway and Transportation Officials (AASHTO LRFD) (AASHTO, 2018), the detail category for base metal at the toe of transverse stiffener-to-flange fillet welds and transverse stiffener-to-web fillet welds to the direction of the web and hence, the primary stress) is Category C′. In skewed bridges or various other applications, there is sometimes a need to place the stiffener or a connection plate at an angle that is not at 90 degrees to the web. As the plate is rotated away from being 90 degrees to the web, the effective “length” of the stiffener in the longitudinal direction increases. However, AASHTO is currently silent on how to address the possible effects on fatigue performance for other angles in between these two extremes. This report summarizes an FEA study that was conducted in order to investigate and determine the fatigue category for welded attachments that are placed at angles other than 0 or 90 degrees for various stiffener geometries and thicknesses. Recommendations on how to incorporate the results into the AASHTO LRFD Bridge Design Specifications are included in this report.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ziqi Yang ◽  
Chern Kun ◽  
Nawawi Chouw

Observations from past earthquake events indicate that skewed bridges are seismically vulnerable due to induced horizontal in-plane rotations of the girder. To date, however, very limited experimental research has been done on the pounding behaviour of skewed bridges. In this study, shake table tests were performed on a single-frame bridge model with adjacent abutments subjected to uniform ground excitations. Bridges with different skew angles, i.e., 0°, 30°, and 45°, were considered. The pounding behaviour was observed using a pair of pounding and measuring heads. The results reveal that poundings could indeed influence the responses of skewed bridges in the longitudinal and transverse directions differently and thus affect the development of the girder rotations. Ignoring pounding effects, the 30° skewed bridges could experience more girder rotations than the 45° skewed bridges. With pounding, the bridges with a large skew angle could suffer more opening girder displacements than straight bridges.


2019 ◽  
Vol 127 ◽  
pp. 105820 ◽  
Author(s):  
H.R. Noori ◽  
M.M. Memarpour ◽  
M. Yakhchalian ◽  
S. Soltanieh

Sign in / Sign up

Export Citation Format

Share Document