scholarly journals General Moving Object Localization from a Single Flying Camera

2020 ◽  
Vol 10 (19) ◽  
pp. 6945
Author(s):  
Kin-Choong Yow ◽  
Insu Kim

Object localization is an important task in the visual surveillance of scenes, and it has important applications in locating personnel and/or equipment in large open spaces such as a farm or a mine. Traditionally, object localization can be performed using the technique of stereo vision: using two fixed cameras for a moving object, or using a single moving camera for a stationary object. This research addresses the problem of determining the location of a moving object using only a single moving camera, and it does not make use of any prior information on the type of object nor the size of the object. Our technique makes use of a single camera mounted on a quadrotor drone, which flies in a specific pattern relative to the object in order to remove the depth ambiguity associated with their relative motion. In our previous work, we showed that with three images, we can recover the location of an object moving parallel to the direction of motion of the camera. In this research, we find that with four images, we can recover the location of an object moving linearly in an arbitrary direction. We evaluated our algorithm on over 70 image sequences of objects moving in various directions, and the results showed a much smaller depth error rate (less than 8.0% typically) than other state-of-the-art algorithms.

2019 ◽  
Vol 10 (1) ◽  
pp. 268
Author(s):  
Sukwoo Jung ◽  
Youngmok Cho ◽  
Doojun Kim ◽  
Minho Chang

This paper describes a new method for the detection of moving objects from moving camera image sequences using an inertial measurement unit (IMU) sensor. Motion detection systems with vision sensors have become a global research subject recently. However, detecting moving objects from a moving camera is a difficult task because of egomotion. In the proposed method, the interesting points are extracted by a Harris detector, and the background and foreground are classified by epipolar geometry. In this procedure, an IMU sensor is used to calculate the initial fundamental matrix. After the feature point classification, a transformation matrix is obtained from matching background feature points. Image registration is then applied to the consecutive images, and a difference map is extracted to find the foreground region. Finally, a minimum bounding box is applied to mark the detected moving object. The proposed method is implemented and tested with numerous real-world driving videos, which show that it outperforms the previous work.


2013 ◽  
Author(s):  
Hai-xin Chen ◽  
Guo-hua Gu ◽  
Xiao-feng Bai ◽  
Tie-kun Zhao ◽  
Fu-yuan Xu

2021 ◽  
Vol 01 (03) ◽  
Author(s):  
Lubin Chang

This paper proposes an interlaced attitude estimation method for spacecraft using vector observations, which can simultaneously estimate the constant attitude at the very start and the attitude of the body frame relative to its initial state. The arbitrary initial attitude, described by constant attitude at the very start, is determined using quaternion estimator which requires no prior information. The multiplicative extended Kalman filter (EKF) is competent for estimating the attitude of the body frame relative to its initial state since the initial value of this attitude is exactly known. The simulation results show that the proposed algorithms could achieve better performance compared with the state-of-the-art algorithms even with extreme large initial errors. Meanwhile, the computational burden is also much less than that of the advanced nonlinear attitude estimators.


Sign in / Sign up

Export Citation Format

Share Document