scholarly journals Research on Hierarchical Control Strategy of AC/DC Hybrid Microgrid Based on Power Coordination Control

2020 ◽  
Vol 10 (21) ◽  
pp. 7603
Author(s):  
Guishuo Wang ◽  
Xiaoli Wang ◽  
Fuan Wang ◽  
Zhao Han

The AC/DC hybrid microgrid has a large-scale and complex control process. It is of great significance and value to design a reasonable power coordination control strategy to maintain the power balance of the system. Based on hierarchical control, this paper designs a reasonable power coordination control strategy for AC/DC hybrid microgrid. For lower control, this paper designs a variety of control modes for each converter in different application scenarios. For the higher control, this paper analyzes the working mode of the system and designs the power coordination control strategy under the grid-connected and isolated island mode. In grid-connected operation, the DC bus voltage can be stabilized by adjusting the operation mode of the DC energy storage and the on-off of the secondary load. In isolated island operation, the DC sub-microgrid is the main microgrid, and the DC energy storage is the main power regulating equipment. This is based on the principle of “energy is in short supply in the system, DC energy storage finally discharge, energy supply exceeds demand in the system, DC energy storage gives priority to charging” of DC energy storage. By adjusting the control strategy of the micro-source, the reference power, and the on-off of the secondary load, the overall power balance is maintained. The Matlab/Simulink simulation software was used to build the AC/DC hybrid microgrid simulation model, which verified the effectiveness and stability of the proposed power coordination control strategy under various operating conditions.

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1614 ◽  
Author(s):  
Jae-Won Chang ◽  
Gyu-Sub Lee ◽  
Hyeon-Jin Moon ◽  
Mark B. Glick ◽  
Seung-Il Moon

Recently, isolated microgrids have been operated using renewable energy sources (RESs), diesel generators, and battery energy storage systems (BESSs) for an economical and reliable power supply to loads. The concept of the complementary control, in which power imbalances are managed by diesel generators in the long time scale and BESSs in the short time scale, is widely adopted in isolated microgrids for efficient and stable operation. This paper proposes a new complementary control strategy for regulating the frequency and state of charge (SOC) when the system has multiple diesel generators and BESSs. In contrast to conventional complementary control, the proposed control strategy enables the parallel operation of diesel generators and BESSs, as well as SOC management. Furthermore, diesel generators regulate the equivalent SOC of BESSs with hierarchical control. Additionally, BESSs regulate the frequency of the system with hierarchical control and manage their individual SOCs. We conducted a case study by using Simulink/MATLAB to verify the effectiveness of the proposed control strategy in comparison with conventional complementary control.


Author(s):  
Shudong Wang ◽  
Jinliang Qiu ◽  
Liyang Zhu ◽  
Tin Ding ◽  
Al-Madhehagi Luai

Sign in / Sign up

Export Citation Format

Share Document