scholarly journals Multi-Objective Optimization of Production Objectives Based on Surrogate Model

2020 ◽  
Vol 10 (21) ◽  
pp. 7870
Author(s):  
Zuzana Červeňanská ◽  
Janette Kotianová ◽  
Pavel Važan ◽  
Bohuslava Juhásová ◽  
Martin Juhás

The article addresses an approximate solution to the multi-objective optimization problem for a black-box function of a manufacturing system. We employ the surrogate of the discrete-event simulation model of a batch production system in an analytical form. Integration of simulation, Design of Experiments methods, and Weighted Sum and Weighted Product multi-objective methods are used in an arrangement of a priori defined preferences to find a solution near the Pareto optimal solution in a criterion space. We compare the results obtained through the analytical approach to the outcomes of simulation-based optimization. The observed results indicate a possibility to apply the suitable analytical model for quickly finding the acceptable approximate solution close to the Pareto optimal front.

2020 ◽  
pp. 105-113
Author(s):  
M. Farsi

The main aim of this research is to present an optimization procedure based on the integration of operability framework and multi-objective optimization concepts to find the single optimal solution of processes. In this regard, the Desired Pareto Index is defined as the ratio of desired Pareto front to the Pareto optimal front as a quantitative criterion to analyze the performance of chemical processes. The Desired Pareto Front is defined as a part of the Pareto front that all outputs are improved compared to the conventional operating condition. To prove the efficiency of proposed optimization method, the operating conditions of ethane cracking process is optimized as a base case. The ethylene and methane production rates are selected as the objectives in the formulated multi-objective optimization problem. Based on the simulation results, applying the obtained operating conditions by the proposed optimization procedure on the ethane cracking process improve ethylene production by about 3% compared to the conventional condition.  


2010 ◽  
Vol 29-32 ◽  
pp. 2496-2502
Author(s):  
Min Wang ◽  
Jun Tang

The number of base station location impact the network quality of service. A new method is proposed based on immune genetic algorithm for site selection. The mathematical model of multi-objective optimization problem for base station selection and the realization of the process were given. The use of antibody concentration selection ensures the diversity of the antibody and avoiding the premature convergence, and the use of memory cells to store Pareto optimal solution of each generation. A exclusion algorithm of neighboring memory cells on the updating and deleting to ensure that the Pareto optimal solution set of the distribution. The experiments results show that the algorithm can effectively find a number of possible base station and provide a solution for the practical engineering application.


Author(s):  
Lu Chen ◽  
◽  
Bin Xin ◽  
Jie Chen ◽  
◽  
...  

Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal solution. In order to support the decision maker (DM) to find his/her most preferred solution, we propose an interactive multi-objective optimization method based on the DM’s preferences in the form of indifference tradeoffs. The method combines evolutionary algorithms with the gradient-based interactive step tradeoff (GRIST) method. An evolutionary algorithm is used to generate an approximate Pareto optimal solution at each iteration. The DM is asked to provide indifference tradeoffs whose projection onto the tangent hyperplane of the Pareto front provides a tradeoff direction. An approach for approximating the normal vector of the tangent hyperplane is proposed which is used to calculate the projection. A water quality management problem is used to demonstrate the interaction process of the interactive method. In addition, three benchmark problems are used to test the accuracy of the normal vector approximation approach and compare the proposed method with GRIST.


Sign in / Sign up

Export Citation Format

Share Document