scholarly journals Minimization of Global Adjustment Charges for Large Electricity Customers Using Energy Storage—Canadian Market Case Study

2020 ◽  
Vol 10 (23) ◽  
pp. 8585
Author(s):  
Abdeslem Kadri ◽  
Farah Mohammadi ◽  
Mohamed Awadallah

Recently, the interest in utilizing energy storage systems (ESSs), particularly batteries, has increased. ESSs are employed for several enhancement tasks in power systems on both the operation and planning scales. On the operation side, ESSs play a main role in offering several ancillary services. In the context of planning, ESSs are used for asset upgrade deferral among other grid applications. This work employs a battery energy storage system (BESS) to minimize the electricity bill charges associated with global adjustment for large consumers in the jurisdiction of Ontario, Canada. An optimization formulation for sizing and scheduling the BESS, to minimize the utility charges and gain profits from other revenue streams, such as energy price arbitrage (EPA), was developed and implemented. The results show the economic feasibility of the developed algorithm to minimize the annual bills of real customers and gain profits. A sensitivity analysis was also carried out to show the potential of the proposed method in providing significant benefits and gains for customers.

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2048 ◽  
Author(s):  
Rodrigo Martins ◽  
Holger Hesse ◽  
Johanna Jungbauer ◽  
Thomas Vorbuchner ◽  
Petr Musilek

Recent attention to industrial peak shaving applications sparked an increased interest in battery energy storage. Batteries provide a fast and high power capability, making them an ideal solution for this task. This work proposes a general framework for sizing of battery energy storage system (BESS) in peak shaving applications. A cost-optimal sizing of the battery and power electronics is derived using linear programming based on local demand and billing scheme. A case study conducted with real-world industrial profiles shows the applicability of the approach as well as the return on investment dependence on the load profile. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, peak-power tariff, and battery aging. This underlines the need for a general mathematical optimization approach to efficiently tackle the challenge of peak shaving using an energy storage system. The case study also compares the applicability of yearly and monthly billing schemes, where the highest load of the year/month is the base for the price per kW. The results demonstrate that batteries in peak shaving applications can shorten the payback period when used for large industrial loads. They also show the impacts of peak shaving variation on the return of investment and battery aging of the system.


Author(s):  
Wan Syakirah Wan Abdullah ◽  
Miszaina Osman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Renuga Verayiah

<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.</span><table class="MsoNormalTable" style="width: 444.85pt; border-collapse: collapse; border: none; mso-border-alt: solid windowtext .5pt; mso-yfti-tbllook: 1184; mso-padding-alt: 0in 5.4pt 0in 5.4pt; mso-border-insideh: .5pt solid windowtext; mso-border-insidev: .5pt solid windowtext;" width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr style="mso-yfti-irow: 0; mso-yfti-firstrow: yes; mso-yfti-lastrow: yes; height: 63.4pt;"><td style="width: 290.6pt; border: none; border-top: solid windowtext 1.0pt; mso-border-top-alt: solid windowtext .5pt; padding: 0in 5.4pt 0in 5.4pt; height: 63.4pt;" valign="top" width="387"><p class="MsoNormal" style="margin-top: 6.0pt; text-align: justify;"><span style="font-size: 9.0pt; color: black; mso-bidi-font-style: italic;">Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.</span></p></td></tr></tbody></table>


Sign in / Sign up

Export Citation Format

Share Document